
7
Modelling long-run relationships in finance

Learning Outcomes

In this chapter, you will learn how to

● Highlight the problems that may occur if non-stationary data
are used in their levels form

● Test for unit roots

● Examine whether systems of variables are cointegrated

● Estimate error correction and vector error correction models

● Explain the intuition behind Johansen’s test for cointegration

● Describe how to test hypotheses in the Johansen framework

● Construct models for long-run relationships between variables
in EViews

7.1 Stationarity and unit root testing

7.1.1 Why are tests for non-stationarity necessary?

There are several reasons why the concept of non-stationarity is important

and why it is essential that variables that are non-stationary be treated dif-

ferently from those that are stationary. Two definitions of non-stationarity

were presented at the start of chapter 5. For the purpose of the analysis in

this chapter, a stationary series can be defined as one with a constant mean,

constant variance and constant autocovariances for each given lag. Therefore,

the discussion in this chapter relates to the concept of weak stationarity.

An examination of whether a series can be viewed as stationary or not is

essential for the following reasons:

● The stationarity or otherwise of a series can strongly influence its behaviour

and properties. To offer one illustration, the word ‘shock’ is usually used
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to denote a change or an unexpected change in a variable or perhaps

simply the value of the error term during a particular time period. For a

stationary series, ‘shocks’ to the system will gradually die away. That is,

a shock during time t will have a smaller effect in time t + 1, a smaller

effect still in time t + 2, and so on. This can be contrasted with the case

of non-stationary data, where the persistence of shocks will always be

infinite, so that for a non-stationary series, the effect of a shock during

time t will not have a smaller effect in time t + 1, and in time t + 2,

etc.

● The use of non-stationary data can lead to spurious regressions. If two

stationary variables are generated as independent random series, when

one of those variables is regressed on the other, the t -ratio on the slope

coefficient would be expected not to be significantly different from zero,

and the value of R2 would be expected to be very low. This seems ob-

vious, for the variables are not related to one another. However, if two

variables are trending over time, a regression of one on the other could

have a high R2 even if the two are totally unrelated. So, if standard

regression techniques are applied to non-stationary data, the end result

could be a regression that ‘looks’ good under standard measures (signif-

icant coefficient estimates and a high R2), but which is really valueless.

Such a model would be termed a ‘spurious regression’.

To give an illustration of this, two independent sets of non-stationary

variables, y and x , were generated with sample size 500, one regressed

on the other and the R2 noted. This was repeated 1,000 times to obtain

1,000 R2 values. A histogram of these values is given in figure 7.1.

As figure 7.1 shows, although one would have expected the R2 val-

ues for each regression to be close to zero, since the explained and
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explanatory variables in each case are independent of one another, in

fact R2 takes on values across the whole range. For one set of data, R2

is bigger than 0.9, while it is bigger than 0.5 over 16% of the time!

● If the variables employed in a regression model are not stationary, then

it can be proved that the standard assumptions for asymptotic analysis

will not be valid. In other words, the usual ‘t -ratios’ will not follow a

t -distribution, and the F -statistic will not follow an F -distribution, and

so on. Using the same simulated data as used to produce figure 7.1,

figure 7.2 plots a histogram of the estimated t -ratio on the slope coeffi-

cient for each set of data.

In general, if one variable is regressed on another unrelated variable,

the t-ratio on the slope coefficient will follow a t-distribution. For a

sample of size 500, this implies that 95% of the time, the t-ratio will

lie between ±2. As figure 7.2 shows quite dramatically, however, the

standard t-ratio in a regression of non-stationary variables can take on

enormously large values. In fact, in the above example, the t-ratio is

bigger than 2 in absolute value over 98% of the time, when it should

be bigger than 2 in absolute value only approximately 5% of the time!

Clearly, it is therefore not possible to validly undertake hypothesis tests

about the regression parameters if the data are non-stationary.

7.1.2 Two types of non-stationarity

There are two models that have been frequently used to characterise the

non-stationarity, the random walk model with drift

yt = μ + yt−1 + ut (7.1)
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and the trend-stationary process -- so-called because it is stationary around

a linear trend

yt = α + βt + ut (7.2)

where ut is a white noise disturbance term in both cases.

Note that the model (7.1) could be generalised to the case where yt is

an explosive process

yt = μ + φyt−1 + ut (7.3)

where φ > 1. Typically, this case is ignored and φ = 1 is used to char-

acterise the non-stationarity because φ > 1 does not describe many data

series in economics and finance, but φ = 1 has been found to describe

accurately many financial and economic time series. Moreover, φ > 1 has

an intuitively unappealing property: shocks to the system are not only

persistent through time, they are propagated so that a given shock will

have an increasingly large influence. In other words, the effect of a shock

during time t will have a larger effect in time t + 1, a larger effect still in

time t + 2, and so on. To see this, consider the general case of an AR(1)

with no drift

yt = φyt−1 + ut (7.4)

Let φ take any value for now. Lagging (7.4) one and then two periods

yt−1 = φyt−2 + ut−1 (7.5)

yt−2 = φyt−3 + ut−2 (7.6)

Substituting into (7.4) from (7.5) for yt−1 yields

yt = φ(φyt−2 + ut−1) + ut (7.7)

yt = φ2 yt−2 + φut−1 + ut (7.8)

Substituting again for yt−2 from (7.6)

yt = φ2(φyt−3 + ut−2) + φut−1 + ut (7.9)

yt = φ3 yt−3 + φ2ut−2 + φut−1 + ut (7.10)

T successive substitutions of this type lead to

yt = φT +1 yt−(T +1) + φut−1 + φ2ut−2 + φ3ut−3 + · · · + φT ut−T + ut (7.11)

There are three possible cases:

(1) φ < 1 ⇒ φT → 0 as T → ∞

So the shocks to the system gradually die away -- this is the stationary

case.
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(2) φ = 1 ⇒ φT = 1 ∀ T

So shocks persist in the system and never die away. The following is

obtained

yt = y0 +

∞
∑

t=0

ut as T →∞ (7.12)

So the current value of y is just an infinite sum of past shocks plus

some starting value of y0. This is known as the unit root case, for the

root of the characteristic equation would be unity.

(3) φ > 1. Now given shocks become more influential as time goes on,

since if φ > 1, φ3 > φ2 > φ, etc. This is the explosive case which, for the

reasons listed above, will not be considered as a plausible description

of the data.

Going back to the two characterisations of non-stationarity, the random

walk with drift

yt = μ + yt−1 + ut (7.13)

and the trend-stationary process

yt = α + βt + ut (7.14)

The two will require different treatments to induce stationarity. The

second case is known as deterministic non-stationarity and de-trending is

required. In other words, if it is believed that only this class of non-

stationarity is present, a regression of the form given in (7.14) would be

run, and any subsequent estimation would be done on the residuals from

(7.14), which would have had the linear trend removed.

The first case is known as stochastic non-stationarity, where there is a

stochastic trend in the data. Letting �yt = yt − yt−1 and Lyt = yt−1 so that

(1 − L) yt = yt − Lyt = yt − yt−1. If (7.13) is taken and yt−1 subtracted from

both sides

yt − yt−1 = μ + ut (7.15)

(1 − L) yt = μ + ut (7.16)

� yt = μ + ut (7.17)

There now exists a new variable �yt , which will be stationary. It would be

said that stationarity has been induced by ‘differencing once’. It should

also be apparent from the representation given by (7.16) why yt is also

known as a unit root process: i.e. that the root of the characteristic equation

(1− z) = 0, will be unity.
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Although trend-stationary and difference-stationary series are both

‘trending’ over time, the correct approach needs to be used in each case. If

first differences of a trend-stationary series were taken, it would ‘remove’

the non-stationarity, but at the expense of introducing an MA(1) structure

into the errors. To see this, consider the trend-stationary model

yt = α + βt + ut (7.18)

This model can be expressed for time t − 1, which would be obtained by

removing 1 from all of the time subscripts in (7.18)

yt−1 = α + β(t − 1) + ut−1 (7.19)

Subtracting (7.19) from (7.18) gives

�yt = β + ut − ut−1 (7.20)

Not only is this a moving average in the errors that has been created,

it is a non-invertible MA (i.e. one that cannot be expressed as an autore-

gressive process). Thus the series, �yt would in this case have some very

undesirable properties.

Conversely if one tried to de-trend a series which has stochastic trend,

then the non-stationarity would not be removed. Clearly then, it is not

always obvious which way to proceed. One possibility is to nest both cases

in a more general model and to test that. For example, consider the model

�yt = α0 + α1t + (γ − 1)yt−1 + ut (7.21)

Although again, of course the t -ratios in (7.21) will not follow a

t-distribution. Such a model could allow for both deterministic and

stochastic non-stationarity. However, this book will now concentrate on

the stochastic stationarity model since it is the model that has been found

to best describe most non-stationary financial and economic time series.

Consider again the simplest stochastic trend model

yt = yt−1 + ut (7.22)

or

�yt = ut (7.23)

This concept can be generalised to consider the case where the series

contains more than one ‘unit root’. That is, the first difference operator,

�, would need to be applied more than once to induce stationarity. This

situation will be described later in this chapter.

Arguably the best way to understand the ideas discussed above is to

consider some diagrams showing the typical properties of certain relevant
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types of processes. Figure 7.3 plots a white noise (pure random) process,

while figures 7.4 and 7.5 plot a random walk versus a random walk with

drift and a deterministic trend process, respectively.

Comparing these three figures gives a good idea of the differences be-

tween the properties of a stationary, a stochastic trend and a deterministic

trend process. In figure 7.3, a white noise process visibly has no trending

behaviour, and it frequently crosses its mean value of zero. The random

walk (thick line) and random walk with drift (faint line) processes of fig-

ure 7.4 exhibit ‘long swings’ away from their mean value, which they cross

very rarely. A comparison of the two lines in this graph reveals that the

positive drift leads to a series that is more likely to rise over time than to

fall; obviously, the effect of the drift on the series becomes greater and
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greater the further the two processes are tracked. Finally, the determin-

istic trend process of figure 7.5 clearly does not have a constant mean,

and exhibits completely random fluctuations about its upward trend. If

the trend were removed from the series, a plot similar to the white noise

process of figure 7.3 would result. In this author’s opinion, more time se-

ries in finance and economics look like figure 7.4 than either figure 7.3 or

7.5. Consequently, as stated above, the stochastic trend model will be the

focus of the remainder of this chapter.

Finally, figure 7.6 plots the value of an autoregressive process of order

1 with different values of the autoregressive coefficient as given by (7.4).
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Values of φ = 0 (i.e. a white noise process), φ = 0.8 (i.e. a stationary AR(1))

and φ = 1 (i.e. a random walk) are plotted over time.

7.1.3 Some more definitions and terminology

If a non-stationary series, yt must be differenced d times before it becomes

stationary, then it is said to be integrated of order d . This would be written

yt ∼ I(d). So if yt ∼ I(d) then �d yt ∼ I(0). This latter piece of terminology

states that applying the difference operator, �, d times, leads to an I(0)

process, i.e. a process with no unit roots. In fact, applying the difference

operator more than d times to an I(d) process will still result in a station-

ary series (but with an MA error structure). An I(0) series is a stationary

series, while an I (1) series contains one unit root. For example, consider

the random walk

yt = yt−1 + ut (7.24)

An I(2) series contains two unit roots and so would require differencing

twice to induce stationarity. I(1) and I(2) series can wander a long way

from their mean value and cross this mean value rarely, while I(0) series

should cross the mean frequently. The majority of financial and economic

time series contain a single unit root, although some are stationary and

some have been argued to possibly contain two unit roots (series such

as nominal consumer prices and nominal wages). The efficient markets

hypothesis together with rational expectations suggest that asset prices

(or the natural logarithms of asset prices) should follow a random walk or

a random walk with drift, so that their differences are unpredictable (or

only predictable to their long-term average value).

To see what types of data generating process could lead to an I(2) series,

consider the equation

yt = 2yt−1 − yt−2 + ut (7.25)

taking all of the terms in y over to the LHS, and then applying the lag

operator notation

yt − 2yt−1 + yt−2 = ut (7.26)

(1 − 2L + L2)yt = ut (7.27)

(1 − L)(1 − L)yt = ut (7.28)

It should be evident now that this process for yt contains two unit roots,

and would require differencing twice to induce stationarity.
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What would happen if yt in (7.25) were differenced only once? Taking

first differences of (7.25), i.e. subtracting yt−1 from both sides

yt − yt−1 = yt−1 − yt−2 + ut (7.29)

yt − yt−1 = (yt − yt−1)−1 + ut (7.30)

�yt = �yt−1 + ut (7.31)

(1 − L)�yt = ut (7.32)

First differencing would therefore have removed one of the unit roots, but

there is still a unit root remaining in the new variable, �yt .

7.1.4 Testing for a unit root

One immediately obvious (but inappropriate) method that readers may

think of to test for a unit root would be to examine the autocorrelation

function of the series of interest. However, although shocks to a unit root

process will remain in the system indefinitely, the acf for a unit root pro-

cess (a random walk) will often be seen to decay away very slowly to zero.

Thus, such a process may be mistaken for a highly persistent but station-

ary process. Hence it is not possible to use the acf or pacf to determine

whether a series is characterised by a unit root or not. Furthermore, even

if the true data generating process for yt contains a unit root, the results

of the tests for a given sample could lead one to believe that the process is

stationary. Therefore, what is required is some kind of formal hypothesis

testing procedure that answers the question, ‘given the sample of data to

hand, is it plausible that the true data generating process for y contains

one or more unit roots?’

The early and pioneering work on testing for a unit root in time series

was done by Dickey and Fuller (Fuller, 1976; Dickey and Fuller, 1979).

The basic objective of the test is to examine the null hypothesis that

φ = 1 in

yt = φyt−1 + ut (7.33)

against the one-sided alternative φ < 1. Thus the hypotheses of interest

are H0: series contains a unit root versus H1: series is stationary.

In practice, the following regression is employed, rather than (7.33), for

ease of computation and interpretation

�yt = ψyt−1 + ut (7.34)

so that a test of φ = 1 is equivalent to a test of ψ = 0 (since φ − 1 = ψ ).

Dickey--Fuller (DF) tests are also known as τ -tests, and can be conducted

allowing for an intercept, or an intercept and deterministic trend, or
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Table 7.1 Critical values for DF tests (Fuller, 1976, p. 373)

Significance level 10% 5% 1%

CV for constant but no trend −2.57 −2.86 −3.43

CV for constant and trend −3.12 −3.41 −3.96

neither, in the test regression. The model for the unit root test in each

case is

yt = φyt−1 + μ + λt + ut (7.35)

The tests can also be written, by subtracting yt−1 from each side of the

equation, as

�yt = ψyt−1 + μ + λt + ut (7.36)

In another paper, Dickey and Fuller (1981) provide a set of additional

test statistics and their critical values for joint tests of the significance of

the lagged y, and the constant and trend terms. These are not examined

further here. The test statistics for the original DF tests are defined as

test statistic =
ψ̂

ˆSE(ψ̂)
(7.37)

The test statistics do not follow the usual t -distribution under the null

hypothesis, since the null is one of non-stationarity, but rather they follow

a non-standard distribution. Critical values are derived from simulations

experiments in, for example, Fuller (1976); see also chapter 12 in this book.

Relevant examples of the distribution are shown in table 7.1. A full set of

Dickey--Fuller (DF) critical values is given in the appendix of statistical

tables at the end of this book. A discussion and example of how such

critical values (CV) are derived using simulations methods are presented

in chapter 12.

Comparing these with the standard normal critical values, it can be

seen that the DF critical values are much bigger in absolute terms (i.e.

more negative). Thus more evidence against the null hypothesis is required

in the context of unit root tests than under standard t -tests. This arises

partly from the inherent instability of the unit root process, the fatter

distribution of the t -ratios in the context of non-stationary data (see figure

7.2), and the resulting uncertainty in inference. The null hypothesis of a

unit root is rejected in favour of the stationary alternative in each case if

the test statistic is more negative than the critical value.
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The tests above are valid only if ut is white noise. In particular, ut is

assumed not to be autocorrelated, but would be so if there was autocor-

relation in the dependent variable of the regression (�yt ) which has not

been modelled. If this is the case, the test would be ‘oversized’, mean-

ing that the true size of the test (the proportion of times a correct

null hypothesis is incorrectly rejected) would be higher than the nom-

inal size used (e.g. 5%). The solution is to ‘augment’ the test using p

lags of the dependent variable. The alternative model in case (i) is now

written

�yt = ψyt−1 +

p
∑

i=1

αi�yt−i + ut (7.38)

The lags of �yt now ‘soak up’ any dynamic structure present in the depen-

dent variable, to ensure that ut is not autocorrelated. The test is known as

an augmented Dickey--Fuller (ADF) test and is still conducted on ψ , and

the same critical values from the DF tables are used as before.

A problem now arises in determining the optimal number of lags of

the dependent variable. Although several ways of choosing p have been

proposed, they are all somewhat arbitrary, and are thus not presented

here. Instead, the following two simple rules of thumb are suggested.

First, the frequency of the data can be used to decide. So, for example, if the

data are monthly, use 12 lags, if the data are quarterly, use 4 lags, and

so on. Clearly, there would not be an obvious choice for the number of

lags to use in a regression containing higher frequency financial data (e.g.

hourly or daily)! Second, an information criterion can be used to decide. So

choose the number of lags that minimises the value of an information

criterion, as outlined in chapter 6.

It is quite important to attempt to use an optimal number of lags of the

dependent variable in the test regression, and to examine the sensitivity

of the outcome of the test to the lag length chosen. In most cases, hope-

fully the conclusion will not be qualitatively altered by small changes in

p, but sometimes it will. Including too few lags will not remove all of

the autocorrelation, thus biasing the results, while using too many will

increase the coefficient standard errors. The latter effect arises since an

increase in the number of parameters to estimate uses up degrees of free-

dom. Therefore, everything else being equal, the absolute values of the

test statistics will be reduced. This will result in a reduction in the power

of the test, implying that for a stationary process the null hypothesis of a

unit root will be rejected less frequently than would otherwise have been

the case.
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7.1.5 Testing for higher orders of integration

Consider the simple regression

�yt = ψyt−1 + ut (7.39)

H0: ψ = 0 is tested against H1: ψ < 0.

If H0 is rejected, it would simply be concluded that yt does not contain

a unit root. But what should be the conclusion if H0 is not rejected?

The series contains a unit root, but is that it? No! What if yt ∼ I(2)? The

null hypothesis would still not have been rejected. It is now necessary to

perform a test of

H0 : yt ∼ I(2) vs. H1 : yt ∼ I(1)

�2 yt (= �yt − �yt−1) would now be regressed on �yt−1 (plus lags of �2 yt to

augment the test if necessary). Thus, testing H0: �yt ∼ I(1) is equivalent to

H0: yt ∼ I(2). So in this case, if H0 is not rejected (very unlikely in practice),

it would be concluded that yt is at least I(2). If H0 is rejected, it would be

concluded that yt contains a single unit root. The tests should continue

for a further unit root until H0 is rejected.

Dickey and Pantula (1987) have argued that an ordering of the tests

as described above (i.e. testing for I(1), then I(2), and so on) is, strictly

speaking, invalid. The theoretically correct approach would be to start by

assuming some highest plausible order of integration (e.g. I(2)), and to test

I(2) against I(1). If I(2) is rejected, then test I(1) against I(0). In practice,

however, to the author’s knowledge, no financial time series contain more

than a single unit root, so that this matter is of less concern in finance.

7.1.6 Phillips–Perron (PP) tests

Phillips and Perron have developed a more comprehensive theory of unit

root non-stationarity. The tests are similar to ADF tests, but they incorpo-

rate an automatic correction to the DF procedure to allow for autocorre-

lated residuals. The tests often give the same conclusions as, and suffer

from most of the same important limitations as, the ADF tests.

7.1.7 Criticisms of Dickey–Fuller- and Phillips–Perron-type tests

The most important criticism that has been levelled at unit root tests

is that their power is low if the process is stationary but with a root

close to the non-stationary boundary. So, for example, consider an AR(1)

data generating process with coefficient 0.95. If the true data generating

process is

yt = 0.95yt−1 + ut (7.40)
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Box 7.1 Stationarity tests

Stationarity tests have stationarity under the null hypothesis, thus reversing the null

and alternatives under the Dickey–Fuller approach. Thus, under stationarity tests, the

data will appear stationary by default if there is little information in the sample. One

such stationarity test is the KPSS test (Kwaitkowski et al., 1992). The computation of

the test statistic is not discussed here but the test is available within the EViews

software. The results of these tests can be compared with the ADF/PP procedure to

see if the same conclusion is obtained. The null and alternative hypotheses under

each testing approach are as follows:

ADF/PP KPSS

H0 : yt ∼ I (1) H0 : yt ∼ I (0)

H1 : yt ∼ I (0) H1 : yt ∼ I (1)

There are four possible outcomes:

(1) Reject H0 and Do not reject H0

(2) Do not Reject H0 and Reject H0

(3) Reject H0 and Reject H0

(4) Do not reject H0 and Do not reject H0

For the conclusions to be robust, the results should fall under outcomes 1 or 2, which

would be the case when both tests concluded that the series is stationary or

non-stationary, respectively. Outcomes 3 or 4 imply conflicting results. The joint use of

stationarity and unit root tests is known as confirmatory data analysis.

the null hypothesis of a unit root should be rejected. It has been thus

argued that the tests are poor at deciding, for example, whether φ = 1 or

φ = 0.95, especially with small sample sizes. The source of this problem

is that, under the classical hypothesis-testing framework, the null hypoth-

esis is never accepted, it is simply stated that it is either rejected or not

rejected. This means that a failure to reject the null hypothesis could oc-

cur either because the null was correct, or because there is insufficient

information in the sample to enable rejection. One way to get around this

problem is to use a stationarity test as well as a unit root test, as described

in box 7.1.

7.2 Testing for unit roots in EViews

This example uses the same data on UK house prices as employed in chap-

ter 5. Assuming that the data have been loaded, and the variables are

defined as in chapter 5, double click on the icon next to the name of the

series that you want to perform the unit root test on, so that a spreadsheet
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appears containing the observations on that series. Open the raw house

price series, ‘hp’ by clicking on the hp icon. Next, click on the View but-

ton on the button bar above the spreadsheet and then Unit Root Test. . . .

You will then be presented with a menu containing various options, as in

screenshot 7.1.

Screenshot 7.1

Options menu for

unit root tests

From this, choose the following options:

(1) Test Type Augmented Dickey--Fuller

(2) Test for Unit Root in Levels

(3) Include in test equation Intercept

(4) Maximum lags 12

and click OK.

This will obviously perform an augmented Dickey--Fuller (ADF) test with

up to 12 lags of the dependent variable in a regression equation on the

raw data series with a constant but no trend in the test equation. EViews

presents a large number of options here -- for example, instead of the
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Dickey--Fuller series, we could run the Phillips--Perron or KPSS tests as

described above. Or, if we find that the levels of the series are non-

stationary, we could repeat the analysis on the first differences directly

from this menu rather than having to create the first differenced series

separately. We can also choose between various methods for determining

the optimum lag length in an augmented Dickey--Fuller test, with the

Schwarz criterion being the default. The results for the raw house price

series would appear as in the following table.

Null Hypothesis: HP has a unit root

Exogenous: Constant

Lag Length: 2 (Automatic based on SIC, MAXLAG=11)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic 2.707012 1.0000

Test critical values: 1% level −3.464101

5% level −2.876277

10% level −2.574704

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(HP)

Method: Least Squares

Date: 09/05/07 Time: 21:15

Sample (adjusted): 1991M04 2007M05

Included observations: 194 after adjustments

Coefficient Std. Error t-Statistic Prob.

HP(-1) 0.004890 0.001806 2.707012 0.0074

D(HP(-1)) 0.220916 0.070007 3.155634 0.0019

D(HP(-2)) 0.291059 0.070711 4.116164 0.0001

C −99.91536 155.1872 −0.643838 0.5205

R-squared 0.303246 Mean dependent var 663.3590

Adjusted R-squared 0.292244 S.D. dependent var 1081.701

S.E. of regression 910.0161 Akaike info criterion 16.48520

Sum squared resid 1.57E+08 Schwarz criterion 16.55258

Log likelihood −1595.065 Hannan-Quinn criter. 16.51249

F-statistic 27.56430 Durbin-Watson stat 2.010299

Prob(F-statistic) 0.000000

The value of the test statistic and the relevant critical values given the

type of test equation (e.g. whether there is a constant and/or trend in-

cluded) and sample size, are given in the first panel of the output above.
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Schwarz’s criterion has in this case chosen to include 2 lags of the depen-

dent variable in the test regression. Clearly, the test statistic is not more

negative than the critical value, so the null hypothesis of a unit root in

the house price series cannot be rejected. The remainder of the output

presents the estimation results. Since the dependent variable in this re-

gression is non-stationary, it is not appropriate to examine the coefficient

standard errors or their t -ratios in the test regression.

Now repeat all of the above steps for the first difference of the house

price series (use the ‘First Difference’ option in the unit root testing win-

dow rather than using the level of the dhp series). The output would

appear as in the following table

Null Hypothesis: D(HP) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic based on SIC, MAXLAG=11)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −5.112531 0.0000

Test critical values: 1% level −3.464101

5% level −2.876277

10% level −2.574704

∗MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(HP,2)

Method: Least Squares

Date: 09/05/07 Time: 21:20

Sample (adjusted): 1991M04 2007M05

Included observations: 194 after adjustments

Coefficient Std. Error t-Statistic Prob.

D(HP(-1)) −0.374773 0.073305 −5.112531 0.0000

D(HP(-1),2) −0.346556 0.068786 −5.038192 0.0000

C 259.6274 81.58188 3.182415 0.0017

R-squared 0.372994 Mean dependent var 9.661185

Adjusted R-squared 0.366429 S.D. dependent var 1162.061

S.E. of regression 924.9679 Akaike info criterion 16.51274

Sum squared resid 1.63E+08 Schwarz criterion 16.56327

Log likelihood −1598.736 Hannan-Quinn criter. 16.53320

F-statistic 56.81124 Durbin-Watson stat 2.045299

Prob(F-statistic) 0.000000
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In this case, as one would expect, the test statistic is more negative than

the critical value and hence the null hypothesis of a unit root in the first

differences is convincingly rejected. For completeness, run a unit root test

on the levels of the dhp series, which are the percentage changes rather

than the absolute differences in prices. You should find that these are also

stationary.

Finally, run the KPSS test on the hp levels series by selecting it from

the ‘Test Type’ box in the unit root testing window. You should observe

now that the test statistic exceeds the critical value, even at the 1% level,

so that the null hypothesis of a stationary series is strongly rejected, thus

confirming the result of the unit root test previously conducted on the

same series.

7.3 Cointegration

In most cases, if two variables that are I(1) are linearly combined, then the

combination will also be I(1). More generally, if variables with differing

orders of integration are combined, the combination will have an order of

integration equal to the largest. If X i,t ∼ I(di ) for i = 1, 2, 3, . . . , k so that

there are k variables each integrated of order di , and letting

zt =

k
∑

i=1

αi X i,t (7.41)

Then zt ∼ I(max di ). zt in this context is simply a linear combination of

the k variables X i . Rearranging (7.41)

X1,t =

k
∑

i=2

βi X i,t + z′
t (7.42)

where βi = −
αi

α1
, z′

t =
zt

α1
, i = 2, . . . , k. All that has been done is to take one

of the variables, X1,t , and to rearrange (7.41) to make it the subject. It could

also be said that the equation has been normalised on X1,t . But viewed

another way, (7.42) is just a regression equation where z′
t is a disturbance

term. These disturbances would have some very undesirable properties:

in general, z′
t will not be stationary and is autocorrelated if all of the X i

are I(1).

As a further illustration, consider the following regression model con-

taining variables yt , x2t , x3t which are all I(1)

yt = β1 + β2x2t + β3x3t + ut (7.43)

For the estimated model, the SRF would be written

yt = β̂1 + β̂2x2t + β̂3x3t + ût (7.44)
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Taking everything except the residuals to the LHS

yt − β̂1 − β̂2x2t − β̂3x3t = ût (7.45)

Again, the residuals when expressed in this way can be considered a linear

combination of the variables. Typically, this linear combination of I(1)

variables will itself be I(1), but it would obviously be desirable to obtain

residuals that are I(0). Under what circumstances will this be the case?

The answer is that a linear combination of I(1) variables will be I(0), in

other words stationary, if the variables are cointegrated.

7.3.1 Definition of cointegration (Engle and Granger, 1987)

Let wt be a k × 1 vector of variables, then the components of wt are inte-

grated of order (d, b) if:

(1) All components of wt are I(d)

(2) There is at least one vector of coefficients α such that

α′wt ∼ I(d − b)

In practice, many financial variables contain one unit root, and are thus

I(1), so that the remainder of this chapter will restrict analysis to the case

where d = b = 1. In this context, a set of variables is defined as cointe-

grated if a linear combination of them is stationary. Many time series

are non-stationary but ‘move together’ over time -- that is, there exist

some influences on the series (for example, market forces), which imply

that the two series are bound by some relationship in the long run. A

cointegrating relationship may also be seen as a long-term or equilibrium

phenomenon, since it is possible that cointegrating variables may devi-

ate from their relationship in the short run, but their association would

return in the long run.

7.3.2 Examples of possible cointegrating relationships in finance

Financial theory should suggest where two or more variables would be

expected to hold some long-run relationship with one another. There are

many examples in finance of areas where cointegration might be expected

to hold, including:

● Spot and futures prices for a given commodity or asset

● Ratio of relative prices and an exchange rate

● Equity prices and dividends.

In all three cases, market forces arising from no-arbitrage conditions

suggest that there should be an equilibrium relationship between the
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series concerned. The easiest way to understand this notion is perhaps

to consider what would be the effect if the series were not cointegrated.

If there were no cointegration, there would be no long-run relationship

binding the series together, so that the series could wander apart without

bound. Such an effect would arise since all linear combinations of the se-

ries would be non-stationary, and hence would not have a constant mean

that would be returned to frequently.

Spot and futures prices may be expected to be cointegrated since they

are obviously prices for the same asset at different points in time, and

hence will be affected in very similar ways by given pieces of information.

The long-run relationship between spot and futures prices would be given

by the cost of carry.

Purchasing power parity (PPP) theory states that a given representative

basket of goods and services should cost the same wherever it is bought

when converted into a common currency. Further discussion of PPP occurs

in section 7.9, but for now suffice it to say that PPP implies that the

ratio of relative prices in two countries and the exchange rate between

them should be cointegrated. If they did not cointegrate, assuming zero

transactions costs, it would be profitable to buy goods in one country, sell

them in another, and convert the money obtained back to the currency

of the original country.

Finally, if it is assumed that some stock in a particular company is

held to perpetuity (i.e. for ever), then the only return that would accrue

to that investor would be in the form of an infinite stream of future

dividend payments. Hence the discounted dividend model argues that

the appropriate price to pay for a share today is the present value of all

future dividends. Hence, it may be argued that one would not expect

current prices to ‘move out of line’ with future anticipated dividends in

the long run, thus implying that share prices and dividends should be

cointegrated.

An interesting question to ask is whether a potentially cointegrating

regression should be estimated using the levels of the variables or the

logarithms of the levels of the variables. Financial theory may provide an

answer as to the more appropriate functional form, but fortunately even

if not, Hendry and Juselius (2000) note that if a set of series is cointegrated

in levels, they will also be cointegrated in log levels.

7.4 Equilibrium correction or error correction models

When the concept of non-stationarity was first considered in the 1970s, a

usual response was to independently take the first differences of each of
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the I(1) variables and then to use these first differences in any subsequent

modelling process. In the context of univariate modelling (e.g. the con-

struction of ARMA models), this is entirely the correct approach. However,

when the relationship between variables is important, such a procedure

is inadvisable. While this approach is statistically valid, it does have the

problem that pure first difference models have no long-run solution. For

example, consider two series, yt and xt , that are both I(1). The model that

one may consider estimating is

�yt = β�xt + ut (7.46)

One definition of the long run that is employed in econometrics implies

that the variables have converged upon some long-term values and are

no longer changing, thus yt = yt−1 = y; xt = xt−1 = x . Hence all the dif-

ference terms will be zero in (7.46), i.e. �yt = 0; �xt = 0, and thus every-

thing in the equation cancels. Model (7.46) has no long-run solution and it

therefore has nothing to say about whether x and y have an equilibrium

relationship (see chapter 4).

Fortunately, there is a class of models that can overcome this problem by

using combinations of first differenced and lagged levels of cointegrated

variables. For example, consider the following equation

�yt = β1�xt + β2(yt−1 − γ xt−1) + ut (7.47)

This model is known as an error correction model or an equilibrium correction

model, and yt−1 − γ xt−1 is known as the error correction term. Provided that

yt and xt are cointegrated with cointegrating coefficient γ , then (yt−1 −

γ xt−1) will be I(0) even though the constituents are I(1). It is thus valid

to use OLS and standard procedures for statistical inference on (7.47). It is

of course possible to have an intercept in either the cointegrating term

(e.g. yt−1 − α − γ xt−1) or in the model for �yt (e.g. �yt = β0 + β1�xt +

β2(yt−1 − γ xt−1) + ut ) or both. Whether a constant is included or not could

be determined on the basis of financial theory, considering the arguments

on the importance of a constant discussed in chapter 4.

The error correction model is sometimes termed an equilibrium correc-

tion model, and the two terms will be used synonymously for the purposes

of this book. Error correction models are interpreted as follows. y is pur-

ported to change between t − 1 and t as a result of changes in the values

of the explanatory variable(s), x , between t − 1 and t , and also in part to

correct for any disequilibrium that existed during the previous period.

Note that the error correction term (yt−1 − γ xt−1) appears in (7.47) with

a lag. It would be implausible for the term to appear without any lag

(i.e. as yt − γ xt ), for this would imply that y changes between t − 1 and
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t in response to a disequilibrium at time t . γ defines the long-run rela-

tionship between x and y, while β1 describes the short-run relationship

between changes in x and changes in y. Broadly, β2 describes the speed

of adjustment back to equilibrium, and its strict definition is that it mea-

sures the proportion of last period’s equilibrium error that is corrected

for.

Of course, an error correction model can be estimated for more than

two variables. For example, if there were three variables, xt , wt , yt , that

were cointegrated, a possible error correction model would be

�yt = β1�xt + β2�wt + β3(yt−1 − γ1xt−1 − γ2wt−1) + ut (7.48)

The Granger representation theorem states that if there exists a dynamic lin-

ear model with stationary disturbances and the data are I(1), then the

variables must be cointegrated of order (1,1).

7.5 Testing for cointegration in regression:
a residuals-based approach

The model for the equilibrium correction term can be generalised further

to include k variables (y and the k − 1 xs)

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut (7.49)

ut should be I(0) if the variables yt , x2t , . . . xkt are cointegrated, but ut will

still be non-stationary if they are not.

Thus it is necessary to test the residuals of (7.49) to see whether they

are non-stationary or stationary. The DF or ADF test can be used on ût ,

using a regression of the form

�ût = ψ ût−1 + vt (7.50)

with vt an iid error term.

However, since this is a test on residuals of a model, ût , then the critical

values are changed compared to a DF or an ADF test on a series of raw

data. Engle and Granger (1987) have tabulated a new set of critical values

for this application and hence the test is known as the Engle--Granger

(EG) test. The reason that modified critical values are required is that

the test is now operating on the residuals of an estimated model rather

than on raw data. The residuals have been constructed from a particular

set of coefficient estimates, and the sampling estimation error in those

coefficients will change the distribution of the test statistic. Engle and

Yoo (1987) tabulate a new set of critical values that are larger in absolute
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value (i.e. more negative) than the DF critical values, also given at the end

of this book. The critical values also become more negative as the number

of variables in the potentially cointegrating regression increases.

It is also possible to use the Durbin--Watson (DW) test statistic or the

Phillips--Perron (PP) approach to test for non-stationarity of ût . If the DW

test is applied to the residuals of the potentially cointegrating regression,

it is known as the Cointegrating Regression Durbin Watson (CRDW). Under

the null hypothesis of a unit root in the errors, CRDW ≈ 0, so the null

of a unit root is rejected if the CRDW statistic is larger than the relevant

critical value (which is approximately 0.5).

What are the null and alternative hypotheses for any unit root test

applied to the residuals of a potentially cointegrating regression?

H0 : ût ∼ I(1)

H1 : ût ∼ I(0).

Thus, under the null hypothesis there is a unit root in the potentially coin-

tegrating regression residuals, while under the alternative, the residuals

are stationary. Under the null hypothesis, therefore, a stationary linear

combination of the non-stationary variables has not been found. Hence,

if this null hypothesis is not rejected, there is no cointegration. The ap-

propriate strategy for econometric modelling in this case would be to

employ specifications in first differences only. Such models would have

no long-run equilibrium solution, but this would not matter since no

cointegration implies that there is no long-run relationship anyway.

On the other hand, if the null of a unit root in the potentially coin-

tegrating regression’s residuals is rejected, it would be concluded that a

stationary linear combination of the non-stationary variables had been

found. Therefore, the variables would be classed as cointegrated. The ap-

propriate strategy for econometric modelling in this case would be to form

and estimate an error correction model, using a method described below.

Box 7.2 Multiple cointegrating relationships

In the case where there are only two variables in an equation, yt , and xt , say, there can

be at most only one linear combination of yt , and xt that is stationary – i.e. at most

one cointegrating relationship. However, suppose that there are k variables in a system

(ignoring any constant term), denoted yt , x2t , . . . xkt . In this case, there may be up to r

linearly independent cointegrating relationships (where r ≤ k − 1). This potentially

presents a problem for the OLS regression approach described above, which is capable

of finding at most one cointegrating relationship no matter how many variables there

are in the system. And if there are multiple cointegrating relationships, how can one

know if there are others, or whether the ‘best’ or strongest cointegrating relationship
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has been found? An OLS regression will find the minimum variance stationary linear

combination of the variables,1 but there may be other linear combinations of the

variables that have more intuitive appeal. The answer to this problem is to use a

systems approach to cointegration, which will allow determination of all r cointegrating

relationships. One such approach is Johansen’s method – see section 7.8.

7.6 Methods of parameter estimation in cointegrated systems

What should be the modelling strategy if the data at hand are thought

to be non-stationary and possibly cointegrated? There are (at least) three

methods that could be used: Engle--Granger, Engle--Yoo and Johansen. The

first and third of these will be considered in some detail below.

7.6.1 The Engle–Granger 2-step method

This is a single equation technique, which is conducted as follows:

Step 1

Make sure that all the individual variables are I(1). Then estimate the

cointegrating regression using OLS. Note that it is not possible to perform

any inferences on the coefficient estimates in this regression -- all that

can be done is to estimate the parameter values. Save the residuals of the

cointegrating regression, ût . Test these residuals to ensure that they are

I(0). If they are I(0), proceed to Step 2; if they are I(1), estimate a model

containing only first differences.

Step 2

Use the step 1 residuals as one variable in the error correction model, e.g.

�yt = β1�xt + β2(ût−1) + vt (7.51)

where ût−1 = yt−1 − τ̂ xt−1. The stationary, linear combination of non-

stationary variables is also known as the cointegrating vector. In this case,

the cointegrating vector would be [1 − τ̂ ]. Additionally, any linear transfor-

mation of the cointegrating vector will also be a cointegrating vector. So,

for example, −10yt−1 + 10τ̂ xt−1 will also be stationary. In (7.45) above, the

cointegrating vector would be [1 − β̂1 − β̂2 − β̂3]. It is now valid to perform

1 Readers who are familiar with the literature on hedging with futures will recognise

that running an OLS regression will minimise the variance of the hedged portfolio, i.e.

it will minimise the regression’s residual variance, and the situation here is analogous.
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inferences in the second-stage regression, i.e. concerning the parameters

β1 and β2 (provided that there are no other forms of misspecification, of

course), since all variables in this regression are stationary.

The Engle--Granger 2-step method suffers from a number of problems:

(1) The usual finite sample problem of a lack of power in unit root and

cointegration tests discussed above.

(2) There could be a simultaneous equations bias if the causality between

y and x runs in both directions, but this single equation approach

requires the researcher to normalise on one variable (i.e. to specify

one variable as the dependent variable and the others as independent

variables). The researcher is forced to treat y and x asymmetrically,

even though there may have been no theoretical reason for doing so. A

further issue is the following. Suppose that the following specification

had been estimated as a potential cointegrating regression

yt = α1 + β1xt + u1t (7.52)

What if instead the following equation was estimated?

xt = α2 + β2 yt + u2t (7.53)

If it is found that u1t ∼ I(0), does this imply automatically that u2t ∼

I(0)? The answer in theory is ‘yes’, but in practice different conclusions

may be reached in finite samples. Also, if there is an error in the model

specification at stage 1, this will be carried through to the cointegra-

tion test at stage 2, as a consequence of the sequential nature of the

computation of the cointegration test statistic.

(3) It is not possible to perform any hypothesis tests about the actual coin-

tegrating relationship estimated at stage 1.

Problems 1 and 2 are small sample problems that should disappear asymp-

totically. Problem 3 is addressed by another method due to Engle and Yoo.

There is also another alternative technique, which overcomes problems 2

and 3 by adopting a different approach based on estimation of a VAR

system -- see section 7.8.

7.6.2 The Engle and Yoo 3-step method

The Engle and Yoo (1987) 3-step procedure takes its first two steps from

Engle--Granger (EG). Engle and Yoo then add a third step giving updated

estimates of the cointegrating vector and its standard errors. The Engle

and Yoo (EY) third step is algebraically technical and additionally, EY suf-

fers from all of the remaining problems of the EG approach. There is
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arguably a far superior procedure available to remedy the lack of testabil-

ity of hypotheses concerning the cointegrating relationship -- namely, the

Johansen (1988) procedure. For these reasons, the Engle--Yoo procedure is

rarely employed in empirical applications and is not considered further

here.

There now follows an application of the Engle--Granger procedure in

the context of spot and futures markets.

7.7 Lead–lag and long-term relationships between spot
and futures markets

7.7.1 Background

If the markets are frictionless and functioning efficiently, changes in the

(log of the) spot price of a financial asset and its corresponding changes in

the (log of the) futures price would be expected to be perfectly contempo-

raneously correlated and not to be cross-autocorrelated. Mathematically,

these notions would be represented as

corr(�log( ft ), � ln(st )) ≈ 1 (a)

corr(�log( ft ), � ln(st−k)) ≈ 0 ∀ k > 0 (b)

corr(�log( ft− j ), � ln(st )) ≈ 0 ∀ j > 0 (c)

In other words, changes in spot prices and changes in futures prices are

expected to occur at the same time (condition (a)). The current change in

the futures price is also expected not to be related to previous changes

in the spot price (condition (b)), and the current change in the spot price

is expected not to be related to previous changes in the futures price

(condition (c)). The changes in the log of the spot and futures prices are

also of course known as the spot and futures returns.

For the case when the underlying asset is a stock index, the equilibrium

relationship between the spot and futures prices is known as the cost of

carry model, given by

F
∗
t = St e(r−d)(T −t) (7.54)

where F∗
t is the fair futures price, St is the spot price, r is a continuously

compounded risk-free rate of interest, d is the continuously compounded

yield in terms of dividends derived from the stock index until the fu-

tures contract matures, and (T − t ) is the time to maturity of the futures

contract. Taking logarithms of both sides of (7.54) gives

f ∗
t = st +(r − d)(T − t) (7.55)
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Table 7.2 DF tests on log-prices and returns for high frequency

FTSE data

Futures Spot

Dickey--Fuller statistics −0.1329 −0.7335

for log-price data

Dickey--Fuller statistics −84.9968 −114.1803

for returns data

where f ∗
t is the log of the fair futures price and st is the log of the spot

price. Equation (7.55) suggests that the long-term relationship between

the logs of the spot and futures prices should be one to one. Thus the

basis, defined as the difference between the futures and spot prices (and if

necessary adjusted for the cost of carry) should be stationary, for if it could

wander without bound, arbitrage opportunities would arise, which would

be assumed to be quickly acted upon by traders such that the relationship

between spot and futures prices will be brought back to equilibrium.

The notion that there should not be any lead--lag relationships between

the spot and futures prices and that there should be a long-term one to

one relationship between the logs of spot and futures prices can be tested

using simple linear regressions and cointegration analysis. This book will

now examine the results of two related papers -- Tse (1995), who employs

daily data on the Nikkei Stock Average (NSA) and its futures contract, and

Brooks, Rew and Ritson (2001), who examine high-frequency data from

the FTSE 100 stock index and index futures contract.

The data employed by Tse (1995) consists of 1,055 daily observations

on NSA stock index and stock index futures values from December 1988

to April 1993. The data employed by Brooks et al. comprises 13,035 ten-

minutely observations for all trading days in the period June 1996--May

1997, provided by FTSE International. In order to form a statistically ade-

quate model, the variables should first be checked as to whether they can

be considered stationary. The results of applying a Dickey--Fuller (DF) test

to the logs of the spot and futures prices of the 10-minutely FTSE data are

shown in table 7.2.

As one might anticipate, both studies conclude that the two log-price se-

ries contain a unit root, while the returns are stationary. Of course, it may

be necessary to augment the tests by adding lags of the dependent variable

to allow for autocorrelation in the errors (i.e. an Augmented Dickey--Fuller

or ADF test). Results for such tests are not presented, since the conclusions

are not altered. A statistically valid model would therefore be one in the

returns. However, a formulation containing only first differences has no
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Table 7.3 Estimated potentially cointegrating

equation and test for cointegration for

high frequency FTSE data

Coefficient Estimated value

γ̂0 0.1345

γ̂1 0.9834

DF test on residuals Test statistic

ẑt −14.7303

Source: Brooks, Rew and Ritson (2001).

long-run equilibrium solution. Additionally, theory suggests that the two

series should have a long--run relationship. The solution is therefore to see

whether there exists a cointegrating relationship between ft and st which

would mean that it is valid to include levels terms along with returns in

this framework. This is tested by examining whether the residuals, ẑt , of

a regression of the form

st = γ0 + γ1 ft + zt (7.56)

are stationary, using a Dickey--Fuller test, where zt is the error term. The

coefficient values for the estimated (7.56) and the DF test statistic are given

in table 7.3.

Clearly, the residuals from the cointegrating regression can be consid-

ered stationary. Note also that the estimated slope coefficient in the coin-

tegrating regression takes on a value close to unity, as predicted from the

theory. It is not possible to formally test whether the true population co-

efficient could be one, however, since there is no way in this framework

to test hypotheses about the cointegrating relationship.

The final stage in building an error correction model using the Engle--

Granger 2-step approach is to use a lag of the first-stage residuals, ẑt , as the

equilibrium correction term in the general equation. The overall model is

� log st = β0 + δẑt−1 + β1� ln st−1 + α1� ln ft−1 + vt (7.57)

where vt is an error term. The coefficient estimates for this model are

presented in table 7.4.

Consider first the signs and significances of the coefficients (these can

now be interpreted validly since all variables used in this model are sta-

tionary). α̂1 is positive and highly significant, indicating that the futures

market does indeed lead the spot market, since lagged changes in futures

prices lead to a positive change in the subsequent spot price. β̂1 is positive
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Table 7.4 Estimated error correction model for high

frequency FTSE data

Coefficient Estimated value t-ratio

β̂0 9.6713E−06 1.6083

δ̂ −0.8388 −5.1298

β̂1 0.1799 19.2886

α̂1 0.1312 20.4946

Source: Brooks, Rew and Ritson (2001).

Table 7.5 Comparison of out-of-sample forecasting accuracy

ECM ECM-COC ARIMA VAR

RMSE 0.0004382 0.0004350 0.0004531 0.0004510

MAE 0.4259 0.4255 0.4382 0.4378

% Correct direction 67.69% 68.75% 64.36% 66.80%

Source: Brooks, Rew and Ritson (2001).

and highly significant, indicating on average a positive autocorrelation in

spot returns. δ̂, the coefficient on the error correction term, is negative

and significant, indicating that if the difference between the logs of the

spot and futures prices is positive in one period, the spot price will fall

during the next period to restore equilibrium, and vice versa.

7.7.2 Forecasting spot returns

Both Brooks, Rew and Ritson (2001) and Tse (1995) show that it is possible

to use an error correction formulation to model changes in the log of a

stock index. An obvious related question to ask is whether such a model

can be used to forecast the future value of the spot series for a holdout

sample of data not used previously for model estimation. Both sets of re-

searchers employ forecasts from three other models for comparison with

the forecasts of the error correction model. These are an error correc-

tion model with an additional term that allows for the cost of carry, an

ARMA model (with lag length chosen using an information criterion) and

an unrestricted VAR model (with lag length chosen using a multivariate

information criterion).

The results are evaluated by comparing their root-mean squared errors,

mean absolute errors and percentage of correct direction predictions. The

forecasting results from the Brooks, Rew and Ritson paper are given in

table 7.5.
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It can be seen from table 7.5 that the error correction models have

both the lowest mean squared and mean absolute errors, and the highest

proportion of correct direction predictions. There is, however, little to

choose between the models, and all four have over 60% of the signs of the

next returns predicted correctly.

It is clear that on statistical grounds the out-of-sample forecasting per-

formances of the error correction models are better than those of their

competitors, but this does not necessarily mean that such forecasts have

any practical use. Many studies have questioned the usefulness of statisti-

cal measures of forecast accuracy as indicators of the profitability of using

these forecasts in a practical trading setting (see, for example, Leitch and

Tanner, 1991). Brooks, Rew and Ritson (2001) investigate this proposition

directly by developing a set of trading rules based on the forecasts of the

error correction model with the cost of carry term, the best statistical

forecasting model. The trading period is an out-of-sample data series not

used in model estimation, running from 1 May--30 May 1997. The ECM-COC

model yields 10-minutely one-step-ahead forecasts. The trading strategy in-

volves analysing the forecast for the spot return, and incorporating the

decision dictated by the trading rules described below. It is assumed that

the original investment is £1,000, and if the holding in the stock index

is zero, the investment earns the risk-free rate. Five trading strategies are

employed, and their profitabilities are compared with that obtained by

passively buying and holding the index. There are of course an infinite

number of strategies that could be adopted for a given set of spot return

forecasts, but Brooks, Rew and Ritson use the following:

● Liquid trading strategy This trading strategy involves making a round-

trip trade (i.e. a purchase and sale of the FTSE 100 stocks) every 10

minutes that the return is predicted to be positive by the model. If the

return is predicted to be negative by the model, no trade is executed

and the investment earns the risk-free rate.

● Buy-and-hold while forecast positive strategy This strategy allows the trader

to continue holding the index if the return at the next predicted invest-

ment period is positive, rather than making a round-trip transaction for

each period.

● Filter strategy: better predicted return than average This strategy involves

purchasing the index only if the predicted returns are greater than the

average positive return (there is no trade for negative returns therefore

the average is only taken of the positive returns).

● Filter strategy: better predicted return than first decile This strategy is

similar to the previous one, but rather than utilising the average as
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Table 7.6 Trading profitability of the error correction model with cost of carry

Terminal Terminal Return(%)

wealth Return(%) wealth (£) annualised Number

Trading strategy (£) annualised with slippage with slippage of trades

Passive investment 1040.92 4.09 1040.92 4.09 1

{49.08} {49.08}

Liquid trading 1156.21 15.62 1056.38 5.64 583

{187.44} {67.68}

Buy-and-Hold while 1156.21 15.62 1055.77 5.58 383

forecast positive {187.44} {66.96}

Filter I 1144.51 14.45 1123.57 12.36 135

{173.40} {148.32}

Filter II 1100.01 10.00 1046.17 4.62 65

{120.00} {55.44}

Filter III 1019.82 1.98 1003.23 0.32 8

{23.76} {3.84}

Source: Brooks, Rew and Ritson (2001).

previously, only the returns predicted to be in the top 10% of all re-

turns are traded on.

● Filter strategy: high arbitrary cutoff An arbitrary filter of 0.0075% is im-

posed, which will result in trades only for returns that are predicted to

be extremely large for a 10-minute interval.

The results from employing each of the strategies using the forecasts

for the spot returns obtained from the ECM-COC model are presented in

table 7.6.

The test month of May 1997 was a particularly bullish one, with a pure

buy-and-hold-the-index strategy netting a return of 4%, or almost 50% on

an annualised basis. Ideally, the forecasting exercise would be conducted

over a much longer period than one month, and preferably over different

market conditions. However, this was simply impossible due to the lack of

availability of very high frequency data over a long time period. Clearly,

the forecasts have some market timing ability in the sense that they seem

to ensure trades that, on average, would have invested in the index when

it rose, but be out of the market when it fell. The most profitable trading

strategies in gross terms are those that trade on the basis of every positive

spot return forecast, and all rules except the strictest filter make more

money than a passive investment. The strict filter appears not to work

well since it is out of the index for too long during a period when the

market is rising strongly.
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However, the picture of immense profitability painted thus far is some-

what misleading for two reasons: slippage time and transactions costs.

First, it is unreasonable to assume that trades can be executed in the

market the minute they are requested, since it may take some time to

find counterparties for all the trades required to ‘buy the index’. (Note,

of course, that in practice, a similar returns profile to the index can be

achieved with a very much smaller number of stocks.) Brooks, Rew and

Ritson therefore allow for ten minutes of ‘slippage time’, which assumes

that it takes ten minutes from when the trade order is placed to when it

is executed. Second, it is unrealistic to consider gross profitability, since

transactions costs in the spot market are non-negligible and the strategies

examined suggested a lot of trades. Sutcliffe (1997, p. 47) suggests that

total round-trip transactions costs for FTSE stocks are of the order of

1.7% of the investment.

The effect of slippage time is to make the forecasts less useful than they

would otherwise have been. For example, if the spot price is forecast to

rise, and it does, it may have already risen and then stopped rising by the

time that the order is executed, so that the forecasts lose their market

timing ability. Terminal wealth appears to fall substantially when slippage

time is allowed for, with the monthly return falling by between 1.5% and

10%, depending on the trading rule.

Finally, if transactions costs are allowed for, none of the trading rules

can outperform the passive investment strategy, and all in fact make sub-

stantial losses.

7.7.3 Conclusions

If the markets are frictionless and functioning efficiently, changes in the

spot price of a financial asset and its corresponding futures price would

be expected to be perfectly contemporaneously correlated and not to be

cross-autocorrelated. Many academic studies, however, have documented

that the futures market systematically ‘leads’ the spot market, reflecting

news more quickly as a result of the fact that the stock index is not a

single entity. The latter implies that:

● Some components of the index are infrequently traded, implying that

the observed index value contains ‘stale’ component prices

● It is more expensive to transact in the spot market and hence the spot

market reacts more slowly to news

● Stock market indices are recalculated only every minute so that new

information takes longer to be reflected in the index.
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Clearly, such spot market impediments cannot explain the inter-daily

lead--lag relationships documented by Tse (1995). In any case, however,

since it appears impossible to profit from these relationships, their exis-

tence is entirely consistent with the absence of arbitrage opportunities

and is in accordance with modern definitions of the efficient markets

hypothesis.

7.8 Testing for and estimating cointegrating systems using the
Johansen technique based on VARs

Suppose that a set of g variables (g ≥ 2) are under consideration that

are I(1) and which are thought may be cointegrated. A VAR with k lags

containing these variables could be set up:

yt = β1 yt−1 + β2 yt−2 + · · · + βk yt−k + ut

g × 1 g × g g × 1 g × g g × 1 g × g g × 1 g × 1
(7.58)

In order to use the Johansen test, the VAR (7.58) above needs to be turned

into a vector error correction model (VECM) of the form

�yt = �yt−k + Ŵ1�yt−1 + Ŵ2�yt−2 + · · · + Ŵk−1�yt−(k−1) + ut (7.59)

where � = (
∑k

i=1 βi ) − Ig and Ŵi = (
∑i

j=1 β j ) − Ig

This VAR contains g variables in first differenced form on the LHS, and

k − 1 lags of the dependent variables (differences) on the RHS, each with

a Ŵ coefficient matrix attached to it. In fact, the Johansen test can be

affected by the lag length employed in the VECM, and so it is useful to

attempt to select the lag length optimally, as outlined in chapter 6. The

Johansen test centres around an examination of the � matrix. � can

be interpreted as a long-run coefficient matrix, since in equilibrium, all

the �yt−i will be zero, and setting the error terms, ut , to their expected

value of zero will leave �yt−k = 0. Notice the comparability between this

set of equations and the testing equation for an ADF test, which has a first

differenced term as the dependent variable, together with a lagged levels

term and lagged differences on the RHS.

The test for cointegration between the ys is calculated by looking at the

rank of the � matrix via its eigenvalues.2 The rank of a matrix is equal

to the number of its characteristic roots (eigenvalues) that are different

2 Strictly, the eigenvalues used in the test statistics are taken from rank-restricted product

moment matrices and not of � itself.
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from zero (see the appendix at the end of this book for some algebra

and examples). The eigenvalues, denoted λi are put in ascending order

λ1 ≥ λ2 ≥ . . . ≥ λg If the λs are roots, in this context they must be less than

1 in absolute value and positive, and λ1 will be the largest (i.e. the closest to

one), while λg will be the smallest (i.e. the closest to zero). If the variables

are not cointegrated, the rank of � will not be significantly different from

zero, so λi ≈ 0 ∀ i . The test statistics actually incorporate ln(1 − λi ), rather

than the λi themselves, but still, when λi = 0, ln(1 − λi ) = 0.

Suppose now that rank (�) = 1, then ln(1 − λ1) will be negative and

ln(1 − λi ) = 0 ∀ i > 1. If the eigenvalue i is non-zero, then ln(1 − λi ) <

0 ∀ i > 1. That is, for � to have a rank of 1, the largest eigenvalue must

be significantly non-zero, while others will not be significantly different

from zero.

There are two test statistics for cointegration under the Johansen ap-

proach, which are formulated as

λtrace(r ) = −T

g
∑

i=r+1

ln(1 − λ̂i ) (7.60)

and

λmax(r, r + 1) = −T ln(1 − λ̂r+1) (7.61)

where r is the number of cointegrating vectors under the null hypothesis

and λ̂i is the estimated value for the ith ordered eigenvalue from the �

matrix. Intuitively, the larger is λ̂i , the more large and negative will be

ln(1 − λ̂i ) and hence the larger will be the test statistic. Each eigenvalue

will have associated with it a different cointegrating vector, which will

be eigenvectors. A significantly non-zero eigenvalue indicates a significant

cointegrating vector.

λtrace is a joint test where the null is that the number of cointegrat-

ing vectors is less than or equal to r against an unspecified or general

alternative that there are more than r . It starts with p eigenvalues, and

then successively the largest is removed. λtrace = 0 when all the λi = 0, for

i = 1, . . . , g.

λmax conducts separate tests on each eigenvalue, and has as its null

hypothesis that the number of cointegrating vectors is r against an alter-

native of r + 1.

Johansen and Juselius (1990) provide critical values for the two statis-

tics. The distribution of the test statistics is non-standard, and the critical
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values depend on the value of g − r , the number of non-stationary compo-

nents and whether constants are included in each of the equations. Inter-

cepts can be included either in the cointegrating vectors themselves or as

additional terms in the VAR. The latter is equivalent to including a trend in

the data generating processes for the levels of the series. Osterwald-Lenum

(1992) provides a more complete set of critical values for the Johansen test,

some of which are also given in the appendix of statistical tables at the

end of this book.

If the test statistic is greater than the critical value from Johansen’s

tables, reject the null hypothesis that there are r cointegrating vectors

in favour of the alternative that there are r + 1 (for λtrace) or more than

r (for λmax). The testing is conducted in a sequence and under the null,

r = 0, 1, . . . , g − 1 so that the hypotheses for λmax are

H0 : r = 0 versus H1 : 0 < r ≤ g

H0 : r = 1 versus H1 : 1 < r ≤ g

H0 : r = 2 versus H1 : 2 < r ≤ g
...

...
...

H0 : r = g − 1 versus H1 : r = g

The first test involves a null hypothesis of no cointegrating vectors (corre-

sponding to � having zero rank). If this null is not rejected, it would

be concluded that there are no cointegrating vectors and the testing

would be completed. However, if H0 : r = 0 is rejected, the null that there

is one cointegrating vector (i.e. H0 : r = 1) would be tested and so on.

Thus the value of r is continually increased until the null is no longer

rejected.

But how does this correspond to a test of the rank of the � matrix? r is

the rank of �. � cannot be of full rank (g) since this would correspond to

the original yt being stationary. If � has zero rank, then by analogy to the

univariate case, �yt depends only on �yt− j and not on yt−1, so that there

is no long-run relationship between the elements of yt−1. Hence there is

no cointegration. For 1 < rank(�) < g, there are r cointegrating vectors. �

is then defined as the product of two matrices, α and β ′, of dimension

(g × r ) and (r × g), respectively, i.e.

� = αβ ′ (7.62)

The matrix β gives the cointegrating vectors, while α gives the amount

of each cointegrating vector entering each equation of the VECM, also

known as the ‘adjustment parameters’.
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For example, suppose that g = 4, so that the system contains four vari-

ables. The elements of the � matrix would be written

� =

⎛

⎜

⎜

⎝

π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34

π41 π42 π43 π44

⎞

⎟

⎟

⎠

(7.63)

If r = 1, so that there is one cointegrating vector, then α and β will be

(4 × 1)

� = αβ ′ =

⎛

⎜

⎜

⎝

α11

α12

α13

α14

⎞

⎟

⎟

⎠

(β11 β12 β13 β14) (7.64)

If r = 2, so that there are two cointegrating vectors, then α and β will be

(4 × 2)

� = αβ ′ =

⎛

⎜

⎜

⎝

α11 α21

α12 α22

α13 α23

α14 α24

⎞

⎟

⎟

⎠

(

β11 β12 β13 β14

β21 β22 β23 β24

)

(7.65)

and so on for r = 3, . . .

Suppose now that g = 4, and r = 1, as in (7.64) above, so that there are

four variables in the system, y1, y2, y3, and y4, that exhibit one cointegrat-

ing vector. Then �yt−k will be given by

� =

⎛

⎜

⎜

⎝

α11

α12

α13

α14

⎞

⎟

⎟

⎠

(β11 β12 β13 β14 )

⎛

⎜

⎜

⎝

y1

y2

y3

y4

⎞

⎟

⎟

⎠

t−k

(7.66)

Equation (7.66) can also be written

� =

⎛

⎜

⎜

⎝

α11

α12

α13

α14

⎞

⎟

⎟

⎠

(β11 y1 + β12 y2 + β13 y3 + β14 y4)t−k (7.67)

Given (7.67), it is possible to write out the separate equations for each

variable �yt . It is also common to ‘normalise’ on a particular variable, so

that the coefficient on that variable in the cointegrating vector is one.

For example, normalising on y1 would make the cointegrating term in
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the equation for �y1

α11

(

y1 +
β12

β11

y2 +
β13

β11

y3 +
β14

β11

y4

)

t−k

, etc.

Finally, it must be noted that the above description is not exactly how the

Johansen procedure works, but is an intuitive approximation to it.

7.8.1 Hypothesis testing using Johansen

Engle--Granger did not permit the testing of hypotheses on the cointegrat-

ing relationships themselves, but the Johansen setup does permit the test-

ing of hypotheses about the equilibrium relationships between the vari-

ables. Johansen allows a researcher to test a hypothesis about one or more

coefficients in the cointegrating relationship by viewing the hypothesis as

a restriction on the � matrix. If there exist r cointegrating vectors, only

these linear combinations or linear transformations of them, or combina-

tions of the cointegrating vectors, will be stationary. In fact, the matrix of

cointegrating vectors β can be multiplied by any non-singular conformable

matrix to obtain a new set of cointegrating vectors.

A set of required long-run coefficient values or relationships between

the coefficients does not necessarily imply that the cointegrating vectors

have to be restricted. This is because any combination of cointegrating

vectors is also a cointegrating vector. So it may be possible to combine

the cointegrating vectors thus far obtained to provide a new one or, in

general, a new set, having the required properties. The simpler and fewer

are the required properties, the more likely that this recombination pro-

cess (called renormalisation) will automatically yield cointegrating vectors

with the required properties. However, as the restrictions become more

numerous or involve more of the coefficients of the vectors, it will eventu-

ally become impossible to satisfy all of them by renormalisation. After this

point, all other linear combinations of the variables will be non-stationary.

If the restriction does not affect the model much, i.e. if the restriction is

not binding, then the eigenvectors should not change much following im-

position of the restriction. A test statistic to test this hypothesis is given

by

test statistic = −T

r
∑

i=1

[ln(1 − λi ) − ln(1 − λi
∗)] ∼ χ2(m) (7.68)

where λ∗
i are the characteristic roots of the restricted model, λi are the

characteristic roots of the unrestricted model, r is the number of non-

zero characteristic roots in the unrestricted model and m is the number

of restrictions.
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Restrictions are actually imposed by substituting them into the relevant

α or β matrices as appropriate, so that tests can be conducted on either the

cointegrating vectors or their loadings in each equation in the system (or

both). For example, considering (7.63)--(7.65) above, it may be that theory

suggests that the coefficients on the loadings of the cointegrating vector(s)

in each equation should take on certain values, in which case it would be

relevant to test restrictions on the elements of α (e.g. α11 = 1, α23 = −1,

etc.). Equally, it may be of interest to examine whether only a sub-set

of the variables in yt is actually required to obtain a stationary linear

combination. In that case, it would be appropriate to test restrictions of

elements of β. For example, to test the hypothesis that y4 is not necessary

to form a long-run relationship, set β14 = 0, β24 = 0, etc.).

For an excellent detailed treatment of cointegration in the context of

both single equation and multiple equation models, see Harris (1995).

Several applications of tests for cointegration and modelling cointegrated

systems in finance will now be given.

7.9 Purchasing power parity

Purchasing power parity (PPP) states that the equilibrium or long-run ex-

change rate between two countries is equal to the ratio of their relative

price levels. Purchasing power parity implies that the real exchange rate,

Qt , is stationary. The real exchange rate can be defined as

Qt =
Et Pt

∗

Pt

(7.69)

where Et is the nominal exchange rate in domestic currency per unit of

foreign currency, Pt is the domestic price level and Pt
∗ is the foreign price

level. Taking logarithms of (7.69) and rearranging, another way of stating

the PPP relation is obtained

et − pt + pt
∗ = qt (7.70)

where the lower case letters in (7.70) denote logarithmic transforms of the

corresponding upper case letters used in (7.69). A necessary and sufficient

condition for PPP to hold is that the variables on the LHS of (7.70) -- that is

the log of the exchange rate between countries A and B, and the logs of

the price levels in countries A and B be cointegrated with cointegrating

vector [1 − 1 1].

A test of this form is conducted by Chen (1995) using monthly data

from Belgium, France, Germany, Italy and the Netherlands over the
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Table 7.7 Cointegration tests of PPP with European data

Tests for

cointegration between r = 0 r ≤ 1 r ≤ 2 α1 α2

FRF--DEM 34.63∗ 17.10 6.26 1.33 −2.50

FRF--ITL 52.69∗ 15.81 5.43 2.65 −2.52

FRF--NLG 68.10∗ 16.37 6.42 0.58 −0.80

FRF--BEF 52.54∗ 26.09∗ 3.63 0.78 −1.15

DEM--ITL 42.59∗ 20.76∗ 4.79 5.80 −2.25

DEM--NLG 50.25∗ 17.79 3.28 0.12 −0.25

DEM--BEF 69.13∗ 27.13∗ 4.52 0.87 −0.52

ITL--NLG 37.51∗ 14.22 5.05 0.55 −0.71

ITL--BEF 69.24∗ 32.16∗ 7.15 0.73 −1.28

NLG--BEF 64.52∗ 21.97∗ 3.88 1.69 −2.17

Critical values 31.52 17.95 8.18 -- --

Notes: FRF -- French franc; DEM -- German mark; NLG -- Dutch guilder; ITL -- Italian

lira; BEF -- Belgian franc.

Source: Chen (1995). Reprinted with the permission of Taylor & Francis Ltd

<www.tandf.co.uk>.

period April 1973 to December 1990. Pair-wise evaluations of the exis-

tence or otherwise of cointegration are examined for all combinations

of these countries (10 country pairs). Since there are three variables in

the system (the log exchange rate and the two log nominal price series)

in each case, and that the variables in their log-levels forms are non-

stationary, there can be at most two linearly independent cointegrating

relationships for each country pair. The results of applying Johansen’s

trace test are presented in Chen’s table 1, adapted and presented here as

table 7.7.

As can be seen from the results, the null hypothesis of no cointegrating

vectors is rejected for all country pairs, and the null of one or fewer coin-

tegrating vectors is rejected for France--Belgium, Germany--Italy, Germany--

Belgium, Italy--Belgium, Netherlands--Belgium. In no cases is the null of

two or less cointegrating vectors rejected. It is therefore concluded that

the PPP hypothesis is upheld and that there are either one or two cointe-

grating relationships between the series depending on the country pair.

Estimates of α1 and α2 are given in the last two columns of table 7.7. PPP

suggests that the estimated values of these coefficients should be 1 and

−1, respectively. In most cases, the coefficient estimates are a long way

from these expected values. Of course, it would be possible to impose this

restriction and to test it in the Johansen framework as discussed above,

but Chen does not conduct this analysis.
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7.10 Cointegration between international bond markets

Often, investors will hold bonds from more than one national market in

the expectation of achieving a reduction in risk via the resulting diver-

sification. If international bond markets are very strongly correlated in

the long run, diversification will be less effective than if the bond mar-

kets operated independently of one another. An important indication of

the degree to which long-run diversification is available to international

bond market investors is given by determining whether the markets are

cointegrated. This book will now study two examples from the academic

literature that consider this issue: Clare, Maras and Thomas (1995), and

Mills and Mills (1991).

7.10.1 Cointegration between international bond markets: a univariate approach

Clare, Maras and Thomas (1995) use the Dickey--Fuller and Engle--Granger

single-equation method to test for cointegration using a pair-wise analy-

sis of four countries’ bond market indices: US, UK, Germany and Japan.

Monthly Salomon Brothers’ total return government bond index data from

January 1978 to April 1990 are employed. An application of the Dickey--

Fuller test to the log of the indices reveals the following results (adapted

from their table 1), given in table 7.8.

Neither the critical values, nor a statement of whether a constant or

trend are included in the test regressions, are offered in the paper. Nev-

ertheless, the results are clear. Recall that the null hypothesis of a unit

root is rejected if the test statistic is smaller (more negative) than the crit-

ical value. For samples of the size given here, the 5% critical value would

Table 7.8 DF tests for international bond indices

Panel A: test on log-index for country DF Statistic

Germany −0.395

Japan −0.799

UK −0.884

US 0.174

Panel B: test on log-returns for country

Germany −10.37

Japan −10.11

UK −10.56

US −10.64

Source: Clare, Maras and Thomas (1995). Reprinted with

the permission of Blackwell Publishers.
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Table 7.9 Cointegration tests for pairs of international bond indices

UK-- UK-- Germany-- Germany-- Japan-- 5% Critical

Test Germany Japan UK--US Japan US US value

CRDW 0.189 0.197 0.097 0.230 0.169 0.139 0.386

DF 2.970 2.770 2.020 3.180 2.160 2.160 3.370

ADF 3.160 2.900 1.800 3.360 1.640 1.890 3.170

Source: Clare, Maras and Thomas (1995). Reprinted with the permission of Blackwell

Publishers.

be somewhere between −1.95 and −3.50. It is thus demonstrated quite

conclusively that the logarithms of the indices are non-stationary, while

taking the first difference of the logs (that is, constructing the returns)

induces stationarity.

Given that all logs of the indices in all four cases are shown to be

I(1), the next stage in the analysis is to test for cointegration by forming

a potentially cointegrating regression and testing its residuals for non-

stationarity. Clare, Maras and Thomas use regressions of the form

Bi = α0 + α1 B j + u (7.71)

with time subscripts suppressed and where Bi and B j represent the log-

bond indices for any two countries i and j . The results are presented in

their tables 3 and 4, which are combined into table 7.9 here. They offer

results from applying 7 different tests, while we present results only for

the Cointegrating Regression Durbin Watson (CRDW), Dickey--Fuller and

Augmented Dickey--Fuller tests (although the lag lengths for the latter are

not given) are presented here.

In this case, the null hypothesis of a unit root in the residuals from

regression (7.71) cannot be rejected. The conclusion is therefore that there

is no cointegration between any pair of bond indices in this sample.

7.10.2 Cointegration between international bond markets:

a multivariate approach

Mills and Mills (1991) also consider the issue of cointegration or non-

cointegration between the same four international bond markets. How-

ever, unlike Clare, Maras and Thomas, who use bond price indices, Mills

and Mills employ daily closing observations on the redemption yields. The

latter’s sample period runs from 1 April 1986 to 29 December 1989, giving

960 observations. They employ a Dickey--Fuller-type regression procedure

to test the individual series for non-stationarity and conclude that all four

yields series are I(1).



Modelling long-run relationships in finance 359

Table 7.10 Johansen tests for cointegration between international bond yields

Critical values
r (number of cointegrating

vectors under the null hypothesis) Test statistic 10% 5%

0 22.06 35.6 38.6

1 10.58 21.2 23.8

2 2.52 10.3 12.0

3 0.12 2.9 4.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

The Johansen systems procedure is then used to test for cointegration

between the series. Unlike the Clare, Maras and Thomas paper, Mills and

Mills (1991) consider all four indices together rather than investigating

them in a pair-wise fashion. Therefore, since there are four variables in

the system (the redemption yield for each country), i.e. g = 4, there can be

at most three linearly independent cointegrating vectors, i.e., r ≤ 3. The

trace statistic is employed, and it takes the form

λtrace(r ) = −T

g
∑

i=r+1

ln(1 − λ̂i ) (7.72)

where λi are the ordered eigenvalues. The results are presented in their

table 2, which is modified slightly here, and presented in table 7.10.

Looking at the first row under the heading, it can be seen that the test

statistic is smaller than the critical value, so the null hypothesis that r = 0

cannot be rejected, even at the 10% level. It is thus not necessary to look

at the remaining rows of the table. Hence, reassuringly, the conclusion

from this analysis is the same as that of Clare, Maras and Thomas -- i.e.

that there are no cointegrating vectors.

Given that there are no linear combinations of the yields that are sta-

tionary, and therefore that there is no error correction representation,

Mills and Mills then continue to estimate a VAR for the first differences

of the yields. The VAR is of the form

�X t =

k
∑

i=1

Ŵi�X t−i + vt (7.73)

where:

X t =

⎡

⎢

⎢

⎣

X (US)t

X (UK)t

X (WG)t

X (JAP)t

⎤

⎥

⎥

⎦

, Ŵi =

⎡

⎢

⎢

⎣

Ŵ11i Ŵ12i Ŵ13i Ŵ14i

Ŵ21i Ŵ22i Ŵ23i Ŵ24i

Ŵ31i Ŵ32i Ŵ33i Ŵ34i

Ŵ41i Ŵ42i Ŵ43i Ŵ44i

⎤

⎥

⎥

⎦

, vt =

⎡

⎢

⎢

⎣

v1t

v2t

v3t

v4t

⎤

⎥

⎥

⎦
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Table 7.11 Variance decompositions for VAR of international bond yields

Explained by movements in
Explaining Days

movements in ahead US UK Germany Japan

US 1 95.6 2.4 1.7 0.3

5 94.2 2.8 2.3 0.7

10 92.9 3.1 2.9 1.1

20 92.8 3.2 2.9 1.1

UK 1 0.0 98.3 0.0 1.7

5 1.7 96.2 0.2 1.9

10 2.2 94.6 0.9 2.3

20 2.2 94.6 0.9 2.3

Germany 1 0.0 3.4 94.6 2.0

5 6.6 6.6 84.8 3.0

10 8.3 6.5 82.9 3.6

20 8.4 6.5 82.7 3.7

Japan 1 0.0 0.0 1.4 100.0

5 1.3 1.4 1.1 96.2

10 1.5 2.1 1.8 94.6

20 1.6 2.2 1.9 94.2

Source: Mills and Mills (1991). Reprinted with the permission of Blackwell Publishers.

They set k, the number of lags of each change in the yield in each regres-

sion, to 8, arguing that likelihood ratio tests rejected the possibility of

smaller numbers of lags. Unfortunately, and as one may anticipate for a

regression of daily yield changes, the R2 values for the VAR equations are

low, ranging from 0.04 for the US to 0.17 for Germany. Variance decompo-

sitions and impulse responses are calculated for the estimated VAR. Two

orderings of the variables are employed: one based on a previous study

and one based on the chronology of the opening (and closing) of the fi-

nancial markets considered: Japan → Germany → UK → US. Only results

for the latter, adapted from tables 4 and 5 of Mills and Mills (1991), are

presented here. The variance decompositions and impulse responses for

the VARs are given in tables 7.11 and 7.12, respectively.

As one may expect from the low R2 of the VAR equations, and the

lack of cointegration, the bond markets seem very independent of one

another. The variance decompositions, which show the proportion of the

movements in the dependent variables that are due to their ‘own’ shocks,

versus shocks to the other variables, seem to suggest that the US, UK

and Japanese markets are to a certain extent exogenous in this system.

That is, little of the movement of the US, UK or Japanese series can be
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Table 7.12 Impulse responses for VAR of international bond yields

Response of US to innovations in

Days after shock US UK Germany Japan

0 0.98 0.00 0.00 0.00

1 0.06 0.01 −0.10 0.05

2 −0.02 0.02 −0.14 0.07

3 0.09 −0.04 0.09 0.08

4 −0.02 −0.03 0.02 0.09

10 −0.03 −0.01 −0.02 −0.01

20 0.00 0.00 −0.10 −0.01

Response of UK to innovations in

Days after shock US UK Germany Japan

0 0.19 0.97 0.00 0.00

1 0.16 0.07 0.01 −0.06

2 −0.01 −0.01 −0.05 0.09

3 0.06 0.04 0.06 0.05

4 0.05 −0.01 0.02 0.07

10 0.01 0.01 −0.04 −0.01

20 0.00 0.00 −0.01 0.00

Response of Germany to innovations in

Days after shock US UK Germany Japan

0 0.07 0.06 0.95 0.00

1 0.13 0.05 0.11 0.02

2 0.04 0.03 0.00 0.00

3 0.02 0.00 0.00 0.01

4 0.01 0.00 0.00 0.09

10 0.01 0.01 −0.01 0.02

20 0.00 0.00 0.00 0.00

Response of Japan to innovations in

Days after shock US UK Germany Japan

0 0.03 0.05 0.12 0.97

1 0.06 0.02 0.07 0.04

2 0.02 0.02 0.00 0.21

3 0.01 0.02 0.06 0.07

4 0.02 0.03 0.07 0.06

10 0.01 0.01 0.01 0.04

20 0.00 0.00 0.00 0.01

Source: Mills and Mills (1991). Reprinted with the permission of

Blackwell Publishers.
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explained by movements other than their own bond yields. In the German

case, however, after 20 days, only 83% of movements in the German yield

are explained by German shocks. The German yield seems particularly

influenced by US (8.4% after 20 days) and UK (6.5% after 20 days) shocks.

It also seems that Japanese shocks have the least influence on the bond

yields of other markets.

A similar pattern emerges from the impulse response functions, which

show the effect of a unit shock applied separately to the error of each

equation of the VAR. The markets appear relatively independent of one

another, and also informationally efficient in the sense that shocks work

through the system very quickly. There is never a response of more than

10% to shocks in any series three days after they have happened; in most

cases, the shocks have worked through the system in two days. Such a

result implies that the possibility of making excess returns by trading in

one market on the basis of ‘old news’ from another appears very unlikely.

7.10.3 Cointegration in international bond markets: conclusions

A single set of conclusions can be drawn from both of these papers. Both

approaches have suggested that international bond markets are not coin-

tegrated. This implies that investors can gain substantial diversification

benefits. This is in contrast to results reported for other markets, such

as foreign exchange (Baillie and Bollerslev, 1989), commodities (Baillie,

1989), and equities (Taylor and Tonks, 1989). Clare, Maras and Thomas

(1995) suggest that the lack of long-term integration between the mar-

kets may be due to ‘institutional idiosyncrasies’, such as heterogeneous

maturity and taxation structures, and differing investment cultures, is-

suance patterns and macroeconomic policies between countries, which

imply that the markets operate largely independently of one another.

7.11 Testing the expectations hypothesis of the term structure
of interest rates

The following notation replicates that employed by Campbell and Shiller

(1991) in their seminal paper. The single, linear expectations theory of

the term structure used to represent the expectations hypothesis (here-

after EH), defines a relationship between an n-period interest rate or yield,

denoted R
(n)
t , and an m-period interest rate, denoted R

(m)
t , where n > m.

Hence R
(n)
t is the interest rate or yield on a longer-term instrument relative

to a shorter-term interest rate or yield, R
(m)
t . More precisely, the EH states
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that the expected return from investing in an n-period rate will equal the

expected return from investing in m-period rates up to n − m periods in

the future plus a constant risk-premium, c, which can be expressed as

R
(n)
t =

1

q

q−1
∑

i=0

Et R
(m)
t+mi + c (7.74)

where q = n/m. Consequently, the longer-term interest rate, R
(n)
t , can be

expressed as a weighted-average of current and expected shorter-term in-

terest rates, R
(m)
t , plus a constant risk premium, c. If (7.74) is considered,

it can be seen that by subtracting R
(m)
t from both sides of the relationship

we have

R
(n)
t − R

(m)
t =

1

q

q−1
∑

i=0

j=i
∑

j=1

Et

[

�(m) R
(m)
t+ jm

]

+ c (7.75)

Examination of (7.75) generates some interesting restrictions. If the inter-

est rates under analysis, say R
(n)
t and R

(m)
t , are I(1) series, then, by defini-

tion, �R
(n)
t and �R

(m)
t will be stationary series. There is a general accep-

tance that interest rates, Treasury Bill yields, etc. are well described as I(1)

processes and this can be seen in Campbell and Shiller (1988) and Stock

and Watson (1988). Further, since c is a constant then it is by definition a

stationary series. Consequently, if the EH is to hold, given that c and �R
(m)
t

are I(0) implying that the RHS of (7.75) is stationary, then R
(n)
t − R

(m)
t must

by definition be stationary, otherwise we will have an inconsistency in

the order of integration between the RHS and LHS of the relationship.

R
(n)
t − R

(m)
t is commonly known as the spread between the n-period and

m-period rates, denoted S
(n,m)
t , which in turn gives an indication of the

slope of the term structure. Consequently, it follows that if the EH is to

hold, then the spread will be found to be stationary and therefore R
(n)
t

and R
(m)
t will cointegrate with a cointegrating vector (1, −1) for [R

(n)
t , R

(m)
t ].

Therefore, the integrated process driving each of the two rates is common

to both and hence it can be said that the rates have a common stochas-

tic trend. As a result, since the EH predicts that each interest rate series

will cointegrate with the one-period interest rate, it must be true that

the stochastic process driving all the rates is the same as that driving the

one-period rate, i.e. any combination of rates formed to create a spread

should be found to cointegrate with a cointegrating vector (1, −1).

Many examinations of the expectations hypothesis of the term structure

have been conducted in the literature, and still no overall consensus ap-

pears to have emerged concerning its validity. One such study that tested
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Table 7.13 Tests of the expectations hypothesis using the US zero coupon yield curve

with monthly data

Lag length Hypothesis

Sample period Interest rates included of VAR is λmax λtrace

1952M1--1978M12 X t = [Rt R
(6)
t ]′ 2 r = 0 47.54∗∗∗ 49.82∗∗∗

r ≤ 1 2.28 2.28

1952M1--1987M2 X t = [Rt R
(120)
t ]′ 2 r = 0 40.66∗∗∗ 43.73∗∗∗

r ≤ 1 3.07 3.07

1952M1--1987M2 X t = [Rt R
(60)
t R

(120)
t ]′ 2 r = 0 40.13∗∗∗ 42.63∗∗∗

r ≤ 1 2.50 2.50

1973M5--1987M2 X t = [Rt R
(60)
t R

(120)
t R

(180)
t R

(240)
t ]′ 7 r = 0 34.78∗∗∗ 75.50∗∗∗

r ≤ 1 23.31∗ 40.72

r ≤ 2 11.94 17.41

r ≤ 3 3.80 5.47

r ≤ 4 1.66 1.66

Notes: ∗,∗∗ and ∗∗∗ denote significance at the 20%, 10% and 5% levels, respectively; r

is the number of cointegrating vectors under the null hypothesis.

Source: Shea (1992). Reprinted with the permission of American Statistical

Association. All rights reserved.

the expectations hypothesis using a standard data-set due to McCulloch

(1987) was conducted by Shea (1992). The data comprises a zero coupon

term structure for various maturities from 1 month to 25 years, covering

the period January 1952--February 1987. Various techniques are employed

in Shea’s paper, while only his application of the Johansen technique is

discussed here. A vector X t containing the interest rate at each of the

maturities is constructed

X t =
[

Rt R
(2)
t . . . R

(n)
t

]′
(7.76)

where Rt denotes the spot interest rate. It is argued that each of the ele-

ments of this vector is non-stationary, and hence the Johansen approach

is used to model the system of interest rates and to test for cointegra-

tion between the rates. Both the λmax and λtrace statistics are employed,

corresponding to the use of the maximum eigenvalue and the cumu-

lated eigenvalues, respectively. Shea tests for cointegration between vari-

ous combinations of the interest rates, measured as returns to maturity.

A selection of Shea’s results is presented in table 7.13.

The results below, together with the other results presented by Shea,

seem to suggest that the interest rates at different maturities are typi-

cally cointegrated, usually with one cointegrating vector. As one may have
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expected, the cointegration becomes weaker in the cases where the anal-

ysis involves rates a long way apart on the maturity spectrum. However,

cointegration between the rates is a necessary but not sufficient condition

for the expectations hypothesis of the term structure to be vindicated by

the data. Validity of the expectations hypothesis also requires that any

combination of rates formed to create a spread should be found to cointe-

grate with a cointegrating vector (1, −1). When comparable restrictions are

placed on the β estimates associated with the cointegrating vectors, they

are typically rejected, suggesting only limited support for the expectations

hypothesis.

7.12 Testing for cointegration and modelling cointegrated
systems using EViews

The S&P500 spot and futures series that were discussed in chapters 2 and 3

will now be examined for cointegration using EViews. If the two series are

cointegrated, this means that the spot and futures prices have a long-term

relationship, which prevents them from wandering apart without bound.

To test for cointegration using the Engle--Granger approach, the residuals

of a regression of the spot price on the futures price are examined.3 Create

two new variables, for the log of the spot series and the log of the futures

series, and call them ‘lspot’ and ‘lfutures’ respectively. Then generate a

new equation object and run the regression:

LSPOT C LFUTURES

Note again that it is not valid to examine anything other than the coeffi-

cient values in this regression. The residuals of this regression are found

in the object called RESID. First, if you click on the Resids tab, you will

see a plot of the levels of the residuals (blue line), which looks much more

like a stationary series than the original spot series (the red line corre-

sponding to the actual values of y) looks. The plot should appear as in

screenshot 7.2.

Generate a new series that will keep these residuals in an object for

later use:

STATRESIDS = RESID

3 Note that it is common to run a regression of the log of the spot price on the log of the

futures rather than a regression in levels; the main reason for using logarithms is

that the differences of the logs are returns, whereas this is not true for the

levels.
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Screenshot 7.2

Actual, Fitted and

Residual plot to

check for

stationarity

This is required since every time a regression is run, the RESID object is up-

dated (overwritten) to contain the residuals of the most recently conducted

regression. Perform the ADF Test on the residual series STATRESIDS. As-

suming again that up to 12 lags are permitted, and that a constant but

not a trend are employed in a regression on the levels of the series, the

results are:

Null Hypothesis: STATRESIDS has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic based on SIC, MAXLAG=12)

t-Statistic Prob.∗

Augmented Dickey-Fuller test statistic −8.050542 0.0000

Test critical values: 1% level −3.534868

5% level −2.906923

10% level −2.591006

∗MacKinnon (1996) one-sided p-values.
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Augmented Dickey-Fuller Test Equation

Dependent Variable: D(STATRESIDS)

Method: Least Squares

Date: 09/06/07 Time: 10:55

Sample (adjusted): 2002M03 2007M07

Included observations: 65 after adjustments

Coefficient Std. Error t-Statistic Prob.

STATRESIDS(-1) −1.027830 0.127672 −8.050542 0.000000

C 0.000352 0.003976 0.088500 0.929800

R-squared 0.507086 Mean dependent var −0.000387

Adjusted R-squared 0.499262 S.D. dependent var 0.045283

S.E. of regression 0.032044 Akaike info criterion −4.013146

Sum squared resid 0.064688 Schwarz criterion −3.946241

Log likelihood 132.4272 Hannan-Quinn criter. −3.986748

F-statistic 64.81123 Durbin-Watson stat 1.935995

Prob(F-statistic) 0.000000

Since the test statistic (−8.05) is more negative than the critical values,

even at the 1% level, the null hypothesis of a unit root in the test regres-

sion residuals is strongly rejected. We would thus conclude that the two

series are cointegrated. This means that an error correction model (ECM)

can be estimated, as there is a linear combination of the spot and futures

prices that would be stationary. The ECM would be the appropriate model

rather than a model in pure first difference form because it would en-

able us to capture the long-run relationship between the series as well as

the short-run one. We could now estimate an error correction model by

running the regression4

rspot c rfutures statresids(−1)

Although the Engle--Granger approach is evidently very easy to use, as

outlined above, one of its major drawbacks is that it can estimate only

up to one cointegrating relationship between the variables. In the spot-

futures example, there can be at most one cointegrating relationship since

there are only two variables in the system. But in other situations, if there

are more variables, there could potentially be more than one linearly

independent cointegrating relationship. Thus, it is appropriate instead to

examine the issue of cointegration within the Johansen VAR framework.

4 If you run this regression, you will see that the estimated ECM results from this

example are not entirely plausible but may have resulted from the relatively short

sample period employed!
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The application we will now examine centres on whether the yields

on treasury bills of different maturities are cointegrated. Re-open the

‘macro.wf1’ workfile that was used in chapter 3. There are six interest

rate series corresponding to three and six months, and one, three, five

and ten years. Each series has a name in the file starting with the letters

‘ustb’. The first step in any cointegration analysis is to ensure that the

variables are all non-stationary in their levels form, so confirm that this

is the case for each of the six series, by running a unit root test on

each one.

Next, to run the cointegration test, highlight the six series and then

click Quick/Group Statistics/Cointegration Test. A box should then appear

with the names of the six series in it. Click OK, and then the following

list of options will appear (screenshot 7.3).

Screenshot 7.3

Johansen

cointegration test

The differences between models 1 to 6 centre on whether an intercept or

a trend or both are included in the potentially cointegrating relationship

and/or the VAR. It is usually a good idea to examine the sensitivity of the

result to the type of specification used, so select Option 6 which will do

this and click OK. The results appear as in the following table
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Date: 09/06/07 Time: 11:43

Sample: 1986M03 2007M04

Included observations: 249

Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

Lags interval: 1 to 4

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend: None None Linear Linear Quadratic

Test Type No Intercept Intercept Intercept Intercept Intercept

No Trend No Trend No Trend Trend Trend

Trace 4 3 4 4 6

Max-Eig 3 2 2 1 1

∗Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend: None None Linear Linear Quadratic

Rank or No Intercept Intercept Intercept Intercept Intercept

No. of CEs No Trend No Trend No Trend Trend Trend

Log Likelihood by Rank (rows) and Model (columns)

0 1667.058 1667.058 1667.807 1667.807 1668.036

1 1690.466 1691.363 1691.975 1692.170 1692.369

2 1707.508 1709.254 1709.789 1710.177 1710.363

3 1719.820 1722.473 1722.932 1726.801 1726.981

4 1728.513 1731.269 1731.728 1738.760 1738.905

5 1733.904 1737.304 1737.588 1746.100 1746.238

6 1734.344 1738.096 1738.096 1751.143 1751.143

Akaike Information Criteria by Rank (rows) and Model (columns)

0 −12.23340 −12.23340 −12.19122 −12.19122 −12.14487

1 −12.32503 −12.32420 −12.28896 −12.28249 −12.24393

2 −12.36552 −12.36349 −12.33566 −12.32271 −12.29208

3 −12.36803∗ −12.36524 −12.34484 −12.35182 −12.32916

4 −12.34147 −12.33148 −12.31910 −12.34345 −12.32856

5 −12.28838 −12.27553 −12.26979 −12.29799 −12.29107

6 −12.19553 −12.17748 −12.17748 −12.23408 −12.23408

Schwarz Criteria by Rank (rows) and Model (columns)

0 −10.19921∗ −10.19921∗ −10.07227 −10.07227 −9.941161

1 −10.12132 −10.10637 −10.00049 −9.979903 −9.870707

2 −9.992303 −9.962013 −9.877676 −9.836474 −9.749338

3 −9.825294 −9.780129 −9.717344 −9.681945 −9.616911

4 −9.629218 −9.562721 −9.522087 −9.489935 −9.446787

5 −9.406616 −9.323131 −9.303259 −9.260836 −9.239781

6 −9.144249 −9.041435 −9.041435 −9.013282 −9.013282
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The results across the six types of model and the type of test (the ‘trace’

or ‘max’ statistics) are a little mixed concerning the number of cointegrat-

ing vectors (the top panel) but they do at least all suggest that the series

are cointegrated -- in other words, all specifications suggest that there is

at least one cointegrating vector. The following three panels all provide

information that could be used to determine the appropriate lag length

for the VAR. The values of the log-likelihood function could be used to

run tests of whether a VAR of a given order could be restricted to a VAR

of lower order; AIC and SBIC values are provided in the final two pan-

els. Fortunately, which ever model is used concerning whether intercepts

and/or trends are incorporated, AIC selects a VAR with 3 lags and SBIC a

VAR with 0 lags. Note that the difference in optimal model order could be

attributed to the relatively small sample size available with this monthly

sample compared with the number of observations that would have been

available were daily data used, implying that the penalty term in SBIC is

more severe on extra parameters in this case.

So, in order to see the estimated models, click View/Cointegration Test

and select Option 3 (Intercept (no trend) in CE and test VAR), changing

the ‘Lag Intervals’ to 1 3, and clicking OK. EViews produces a very large

quantity of output, as shown in the following table.5

Date: 09/06/07 Time: 13:20

Sample (adjusted): 1986M07 2007M04

Included observations: 250 after adjustments

Trend assumption: Linear deterministic trend

Series: USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

Lags interval (in first differences): 1 to 3

Unrestricted Cointegration Rank Test (Trace)

Hypothesized Trace 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.185263 158.6048 95.75366 0.0000

At most 1∗ 0.140313 107.3823 69.81889 0.0000

At most 2∗ 0.136686 69.58558 47.85613 0.0001

At most 3∗ 0.082784 32.84123 29.79707 0.0216

At most 4 0.039342 11.23816 15.49471 0.1973

At most 5 0.004804 1.203994 3.841466 0.2725

Trace test indicates 4 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

5 Estimated cointegrating vectors and loadings are provided by EViews for 2--5

cointegrating vectors as well, but these are not shown to preserve space.
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Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized Max-Eigen 0.05

No. of CE(s) Eigenvalue Statistic Critical Value Prob.∗∗

None∗ 0.185263 51.22249 40.07757 0.0019

At most 1∗ 0.140313 37.79673 33.87687 0.0161

At most 2∗ 0.136686 36.74434 27.58434 0.0025

At most 3∗ 0.082784 21.60308 21.13162 0.0429

At most 4 0.039342 10.03416 14.26460 0.2097

At most 5 0.004804 1.203994 3.841466 0.2725

Max-eigenvalue test indicates 4 cointegrating eqn(s) at the 0.05 level
∗denotes rejection of the hypothesis at the 0.05 level
∗∗MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b′∗S11∗b = I):

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

2.775295 −6.449084 −14.79360 1.880919 −4.947415 21.32095

2.879835 0.532476 −0.398215 −7.247578 0.964089 3.797348

6.676821 −15.83409 1.422340 21.39804 −20.73661 6.834275

−7.351465 −9.144157 −3.832074 −6.082384 15.06649 11.51678

1.301354 0.034196 3.251778 8.469627 −8.131063 −4.915350

−2.919091 1.146874 0.663058 −1.465376 3.350202 −1.422377

Unrestricted Adjustment Coefficients (alpha):

D(USTB10Y) 0.030774 0.009498 0.038434 −0.042215 0.004975 0.012630

D(USTB1Y) 0.047301 −0.013791 0.037992 −0.050510 −0.012189 0.004599

D(USTB3M) 0.063889 −0.028097 0.004484 −0.031763 −0.003831 0.001249

D(USTB3Y) 0.042465 0.014245 0.035935 −0.062930 −0.006964 0.010137

D(USTB5Y) 0.039796 0.018413 0.041033 −0.058324 0.001649 0.010563

D(USTB6M) 0.042840 −0.029492 0.018767 −0.046406 −0.006399 0.002473

1 Cointegrating Equation(s): Log likelihood 1656.437

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

1.000000 −2.323747 −5.330461 0.677737 −1.782662 7.682407

(0.93269) (0.78256) (0.92410) (0.56663) (1.28762)
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Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.085407

(0.04875)

D(USTB1Y) 0.131273

(0.04510)

D(USTB3M) 0.177312

(0.03501)

D(USTB3Y) 0.117854

(0.05468)

D(USTB5Y) 0.110446

(0.05369)

D(USTB6M) 0.118894

(0.03889)

2 Cointegrating Equation(s): Log likelihood 1675.335

Normalized cointegrating coefficients (standard error in parentheses)

USTB10Y USTB1Y USTB3M USTB3Y USTB5Y USTB6M

1.000000 0.000000 −0.520964 −2.281223 0.178708 1.787640

(0.76929) (0.77005) (0.53441) (0.97474)

0.000000 1.000000 2.069717 −1.273357 0.844055 −2.536751

(0.43972) (0.44016) (0.30546) (0.55716)

Adjustment coefficients (standard error in parentheses)

D(USTB10Y) 0.112760 −0.193408

(0.07021) (0.11360)

D(USTB1Y) 0.091558 −0.312389

(0.06490) (0.10500)

D(USTB3M) 0.096396 −0.426988

(0.04991) (0.08076)

D(USTB3Y) 0.158877 −0.266278

(0.07871) (0.12735)

D(USTB5Y) 0.163472 −0.246844

(0.07722) (0.12494)

D(USTB6M) 0.033962 −0.291983

(0.05551) (0.08981)

Note: Table truncated.
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The first two panels of the table show the results for the λtrace and λmax

statistics respectively. The second column in each case presents the or-

dered eigenvalues, the third column the test statistic, the fourth column

the critical value and the final column the p-value. Examining the trace

test, if we look at the first row after the headers, the statistic of 158.6048

considerably exceeds the critical value (of 95) and so the null of no coin-

tegrating vectors is rejected. If we then move to the next row, the test

statistic (107.3823) again exceeds the critical value so that the null of at

most one cointegrating vector is also rejected. This continues, until we do

not reject the null hypothesis of at most four cointegrating vectors at the

5% level, and this is the conclusion. The max test, shown in the second

panel, confirms this result.

The unrestricted coefficient values are the estimated values of coeffi-

cients in the cointegrating vector, and these are presented in the third

panel. However, it is sometimes useful to normalise the coefficient values

to set the coefficient value on one of them to unity, as would be the case in

the cointegrating regression under the Engle--Granger approach. The nor-

malisation will be done by EViews with respect to the first variable given

in the variable list (i.e. which ever variable you listed first in the system

will by default be given a coefficient of 1 in the normalised cointegrating

vector). Panel 6 of the table presents the estimates if there were only one

cointegrating vector, which has been normalised so that the coefficient on

the ten-year bond yield is unity. The adjustment coefficients, or loadings

in each regression (i.e. the ‘amount of the cointegrating vector’ in each

equation), are also given in this panel. In the next panel, the same format

is used (i.e. the normalised cointegrating vectors are presented and then

the adjustment parameters) but under the assumption that there are two

cointegrating vectors, and this proceeds until the situation where there

are five cointegrating vectors, the maximum number possible for a system

containing six variables.

In order to see the whole VECM model, select Proc/Make Vector

Autoregression. . . . Starting on the default ‘Basics’ tab, in ‘VAR type’, se-

lect Vector Error Correction, and in the ‘Lag Intervals for D(Endogenous):’

box, type 1 3. Then click on the cointegration tab and leave the default

as 1 cointegrating vector for simplicity in the ‘Rank’ box and option 3 to

have an intercept but no trend in the cointegrating equation and the VAR.

When OK is clicked, the output for the entire VECM will be seen.

It is sometimes of interest to test hypotheses about either the parame-

ters in the cointegrating vector or their loadings in the VECM. To do this
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from the ‘Vector Error Correction Estimates’ screen, click the Estimate

button and click on the VEC Restrictions tab.

In EViews, restrictions concerning the cointegrating relationships em-

bodied in β are denoted by B(i,j), where B(i,j) represents the jth coefficient

in the ith cointegrating relationship (screenshot 7.4).

Screenshot 7.4

VAR specification for

Johansen tests

In this case, we are allowing for only one cointegrating relationship, so

suppose that we want to test the hypothesis that the three-month and six-

month yields do not appear in the cointegrating equation. We could test

this by specifying the restriction that their parameters are zero, which in

EViews terminology would be achieved by writing B(1,3) = 0, B(1,6) = 0 in

the ‘VEC Coefficient Restrictions’ box and clicking OK. EViews will then

show the value of the test statistic, followed by the restricted cointegrating

vector and the VECM. To preseve space, only the test statistic and restricted

cointegrating vector are shown in the following table.

In this case, there are two restrictions, so that the test statistic follows

a χ2 distribution with 2 degrees of freedom. In this case, the p-value for

the test is 0.001, and so the restrictions are not supported by the data and
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Vector Error Correction Estimates

Date: 09/06/07 Time: 14:04

Sample (adjusted): 1986M07 2007M04

Included observations: 250 after adjustments

Standard errors in ( ) & t-statistics in [ ]

Cointegration Restrictions:

B(1,3) = 0, B(1,6) = 0

Convergence achieved after 38 iterations.

Not all cointegrating vectors are identified

LR test for binding restrictions (rank = 1):

Chi-square(2) 13.50308

Probability 0.001169

Cointegrating Eq: CointEq1

USTB10Y(-1) −0.088263

USTB1Y(-1) −2.365941

USTB3M(-1) 0.000000

USTB3Y(-1) 5.381347

USTB5Y(-1) −3.149580

USTB6M(-1) 0.000000

C 0.923034

Note: Table truncated

we would conclude that the cointegrating relationship must also include

the short end of the yield curve.

When performing hypothesis tests concerning the adjustment coeffi-

cients (i.e. the loadings in each equation), the restrictions are denoted by

A(i, j), which is the coefficient on the cointegrating vector for the ith

variable in the jth cointegrating relation. For example, A(2, 1) = 0 would

test the null that the equation for the second variable in the order that

they were listed in the original specification (USTB1Y in this case) does

not include the first cointegrating vector, and so on. Examining some

restrictions of this type is left as an exercise.

Key concepts
The key terms to be able to define and explain from this chapter are

● non-stationary ● explosive process

● unit root ● spurious regression

● augmented Dickey--Fuller test ● cointegration

● error correction model ● Engle--Granger 2-step approach

● Johansen technique ● vector error correction model

● eigenvalues
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Review questions

1. (a) What kinds of variables are likely to be non-stationary? How can

such variables be made stationary?

(b) Why is it in general important to test for non-stationarity in time

series data before attempting to build an empirical model?

(c) Define the following terms and describe the processes that they

represent

(i) Weak stationarity

(ii) Strict stationarity

(iii) Deterministic trend

(iv) Stochastic trend.

2. A researcher wants to test the order of integration of some time series

data. He decides to use the DF test. He estimates a regression of the

form

�yt = μ + ψyt−1 + ut

and obtains the estimate ψ̂ = −0.02 with standard error = 0.31.

(a) What are the null and alternative hypotheses for this test?

(b) Given the data, and a critical value of −2.88, perform the test.

(c) What is the conclusion from this test and what should be the next

step?

(d) Why is it not valid to compare the estimated test statistic with the

corresponding critical value from a t-distribution, even though the test

statistic takes the form of the usual t-ratio?

3. Using the same regression as for question 2, but on a different set of

data, the researcher now obtains the estimate ψ̂ = −0.52 with standard

error = 0.16.

(a) Perform the test.

(b) What is the conclusion, and what should be the next step?

(c) Another researcher suggests that there may be a problem with this

methodology since it assumes that the disturbances (ut ) are white

noise. Suggest a possible source of difficulty and how the researcher

might in practice get around it.

4. (a) Consider a series of values for the spot and futures prices of a given

commodity. In the context of these series, explain the concept of

cointegration. Discuss how a researcher might test for cointegration

between the variables using the Engle–Granger approach. Explain

also the steps involved in the formulation of an error correction

model.
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(b) Give a further example from finance where cointegration between a

set of variables may be expected. Explain, by reference to the

implication of non-cointegration, why cointegration between the

series might be expected.

5. (a) Briefly outline Johansen’s methodology for testing for cointegration

between a set of variables in the context of a VAR.

(b) A researcher uses the Johansen procedure and obtains the following

test statistics (and critical values):

r λmax 95% critical value

0 38.962 33.178

1 29.148 27.169

2 16.304 20.278

3 8.861 14.036

4 1.994 3.962

Determine the number of cointegrating vectors.

(c) ‘If two series are cointegrated, it is not possible to make inferences

regarding the cointegrating relationship using the Engle–Granger

technique since the residuals from the cointegrating regression are

likely to be autocorrelated.’ How does Johansen circumvent this

problem to test hypotheses about the cointegrating relationship?

(d) Give one or more examples from the academic finance literature of

where the Johansen systems technique has been employed. What

were the main results and conclusions of this research?

(e) Compare the Johansen maximal eigenvalue test with the test based

on the trace statistic. State clearly the null and alternative

hypotheses in each case.

6. (a) Suppose that a researcher has a set of three variables,

yt (t = 1, . . . , T ), i.e. yt denotes a p-variate, or p × 1 vector, that she

wishes to test for the existence of cointegrating relationships using

the Johansen procedure.

What is the implication of finding that the rank of the appropriate

matrix takes on a value of

(i) 0 (ii) 1 (iii) 2 (iv) 3?

(b) The researcher obtains results for the Johansen test using the

variables outlined in part (a) as follows:

r λmax 5% critical value

0 38.65 30.26

1 26.91 23.84

2 10.67 17.72

3 8.55 10.71
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Determine the number of cointegrating vectors, explaining your

answer.

7. Compare and contrast the Engle–Granger and Johansen methodologies

for testing for cointegration and modelling cointegrated systems. Which,

in your view, represents the superior approach and why?

8. In EViews, open the ‘currencies.wf1’ file that will be discussed in detail

in the following chapter. Determine whether the exchange rate series (in

their raw levels forms) are non-stationary. If that is the case, test for

cointegration between them using both the Engle–Granger and Johansen

approaches. Would you have expected the series to cointegrate? Why or

why not?


